[BZOJ 2118]墨墨的等式

danihao123 posted @ 2016年9月11日 15:16 in 题解 with tags SPFA 数论 数学 最短路 bzoj , 216 阅读
转载请注明出处:http://danihao123.is-programmer.com/

论如何把数论乱搞和图论乱搞出在一起……

这个题由于要求[tex]x\ge 0[/tex],所以不能gcd乱搞。我们可以先取[tex]\{a_n\}[/tex]的最小值[tex]p[/tex](忽略为0的情况,为啥取最小值待会再说),对方程两边模[tex]p[/tex]。然后对于任何能使某个同余方程成立的[tex]\{x_n\}[/tex],将其中所有[tex]x_i[/tex]同时加任意个[tex]p[/tex],同余方程都成立。

取模后,[tex]B\in Z_p[/tex],所以说只要对于[tex]Z_p[/tex]中的每个数找出最小的一组合法解即能推出其他解(所以说,剩余系越少效率越高,这也就要求取的[tex]a_i[/tex]要小)。不过这个最小的一组合法解怎么找?

我们先找出任意一个合法[tex]B[/tex](比如说0吧),然后尝试加上[tex]a_i[/tex],就可以推出其他[tex]B\in Z_p[/tex]的最小解。这个应用当然是需要最短路辣。

求出来的最短路,表示的是取最小解时的[tex]B[/tex]。这样的话就可以推出某个前缀区间中合法[tex]B[/tex]的个数(能加多少[tex]p[/tex],就有多少个,注意不要忽略加0个的情况),并且答案符合区间减法,最后做差分即可。

注意忽略[tex]a_i=0[/tex]的情况(相当于不存在)。

代码:

/**************************************************************
    Problem: 2118
    User: danihao123
    Language: C++
    Result: Accepted
    Time:1952 ms
    Memory:5508 kb
****************************************************************/
 
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#ifdef DEBUG
#include <cassert>
#endif
using namespace std;
typedef long long ll;
const int maxn=15;
const ll INF=0x7f7f7f7f7f7f7f7f;
ll A[maxn];
bool inQueue[500005];
ll d[500005];
int n;
ll minv;
inline void SPFA(){
    register int i,u,to;
    queue<int> Q;
    memset(d,0x7f,sizeof(d));
    d[0]=0;
    Q.push(0);
    inQueue[0]=true;
    #ifdef DEBUG
    assert(d[1]==INF);
    #endif
    while(!Q.empty()){
        u=Q.front();
        Q.pop();
        inQueue[u]=false;
        for(i=1;i<=n;i++){
            to=(u+A[i])%minv;
            if(d[u]<INF && d[u]+A[i]<d[to]){
                d[to]=d[u]+A[i];
                if(!inQueue[to]){
                    Q.push(to);
                    inQueue[to]=true;
                }
            }
        }
    }
}
 
inline ll Calc(ll x){
    register ll ans=0;
    register int i=0;
    for(i=0;i<minv;i++)
        if(d[i]<=x)
            ans+=(x-d[i])/minv+1;
    return ans;
}
 
int main(){
    ll l,r;
    register int i;
    scanf("%d%lld%lld",&n,&l,&r);
    minv=0x7fffffff;
    for(i=1;i<=n;i++){
        scanf("%d",&A[i]);
        if(!A[i]){
            i--;
            n--;
            continue;
        }
        minv=min(minv,A[i]);
    }
    SPFA();
    printf("%lld\n",Calc(r)-Calc(l-1));
    return 0;
}


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter