[BZOJ 2763]飞行路线
分层图最短路处女作TAT
很明显要求你求一个分层图上的最短路。不过没必要把分层图构出来,手写转移即可。还有卡SPFA是怎么回事?出题人你粗来我保证不打死你……
然而沉迷pb_ds,不能自拔。
代码:
/************************************************************** Problem: 2763 User: danihao123 Language: C++ Result: Accepted Time:268 ms Memory:3136 kb ****************************************************************/ #include <cstdio> #include <queue> #include <algorithm> #include <utility> #include <cstring> #include <cctype> #include <ext/pb_ds/priority_queue.hpp> using namespace std; const int maxn=10001,maxm=100001,maxk=11; typedef pair<int,int> pii; int first[maxn]; int next[maxm],to[maxm],dist[maxm]; int graph_cnt=0; inline void Add_Edge(int u,int v,int d){ graph_cnt++; next[graph_cnt]=first[u]; first[u]=graph_cnt; to[graph_cnt]=v; dist[graph_cnt]=d; } struct Node{ pii pnt; int d; bool operator <(const Node& x) const{ return d<x.d; } bool operator >(const Node& x) const{ return d>x.d; } }; typedef __gnu_pbds::priority_queue<Node,greater<Node> > Heap; Heap::point_iterator ite[maxn][maxk]; Heap Q; int n,k; bool vis[maxn][maxk]; int d[maxn][maxk]; inline void relax(int u,int v,int di){ d[u][v]=di; if(ite[u][v]!=0) Q.modify(ite[u][v],(Node){make_pair(u,v),di}); else ite[u][v]=Q.push((Node){make_pair(u,v),di}); } int Dijkstra(int s,int t){ register int i,u,v; pii temp; memset(d,0x7f,sizeof(d)); d[s][0]=0; ite[s][0]=Q.push((Node){make_pair(s,0),0}); while(!Q.empty()){ temp=Q.top().pnt; Q.pop(); u=temp.first; v=temp.second; if(vis[u][v]) continue; vis[u][v]=true; for(i=first[u];i;i=next[i]){ if(v<k){ if(d[u][v]<d[to[i]][v+1]){ relax(to[i],v+1,d[u][v]); } } if(d[u][v]+dist[i]<d[to[i]][v]){ relax(to[i],v,d[u][v]+dist[i]); } } } register int ans=0x7f7f7f7f; for(i=0;i<=k;i++) ans=min(ans,d[t][i]); return ans; } int main(){ int m,s,t,u,v,d; register int i; scanf("%d%d%d%d%d",&n,&m,&k,&s,&t); for(i=1;i<=m;i++){ scanf("%d%d%d",&u,&v,&d); Add_Edge(u,v,d); Add_Edge(v,u,d); } printf("%d\n",Dijkstra(s,t)); return 0; }
[BZOJ 4152]The Captain
这题初看有些棘手。但是毕竟是最短路,[tex]min(abs(x_{1}-x_{2}),abs(y_{1}-y_{2}))[/tex]这样的边,大可以分成两条边来建,于是乎min就形同虚设了。并且我们可以看到这样建图有一个好处:跨越若干点的方案可以一定可以分成图上的若干边。问题大为简化,迎刃而解。
但这提有个丧病的地方:卡SPFA。加了一些优化照样挂。所以我一气之下写了可并堆优化的Dijkstra :)当然可并堆用的是pb_ds辣。
代码:
/************************************************************** Problem: 4152 User: danihao123 Language: C++ Result: Accepted Time:4888 ms Memory:17412 kb ****************************************************************/ #include <cstdio> #include <algorithm> #include <cstring> #include <utility> #include <ext/pb_ds/priority_queue.hpp> #include <cctype> #include <bitset> #ifdef DEBUG #include <cassert> #endif using namespace std; const int maxn=200001; int n; inline int abs(int x){ return x<0?-x:x; } int first[maxn]; int next[maxn*4],to[maxn*4],dist[maxn*4]; int graph_cnt=0; inline void Add_Edge(int x,int y,int d){ graph_cnt++; next[graph_cnt]=first[x]; first[x]=graph_cnt; to[graph_cnt]=y; dist[graph_cnt]=d; } int d[maxn]; bitset<maxn> vis; typedef pair<int,int> my_pair; typedef __gnu_pbds::priority_queue<my_pair,greater<my_pair> > Heap; Heap::point_iterator ite[maxn]; Heap Q; int dij(){ register int i,u; memset(d,0x7f,sizeof(d)); d[1]=0; ite[1]=Q.push(make_pair(0,1)); while(!Q.empty()){ u=Q.top().second; Q.pop(); if(vis[u]) continue; vis[u]=true; for(i=first[u];i;i=next[i]){ if(d[to[i]]>(dist[i]+d[u])){ d[to[i]]=dist[i]+d[u]; if(ite[to[i]]!=0) Q.modify(ite[to[i]],make_pair(d[to[i]],to[i])); else ite[to[i]]=Q.push(make_pair(d[to[i]],to[i])); } } } return d[n]; } int pr[maxn][2]; int order1[maxn],order2[maxn]; int cmp1(const int i,const int j){ return pr[i][0]<pr[j][0]; } int cmp2(const int i,const int j){ return pr[i][1]<pr[j][1]; } // I/O优化 inline int readint(){ char c=getchar(); register int x=0; while(!isdigit(c)) c=getchar(); while(isdigit(c)){ x=x*10+c-'0'; c=getchar(); } return x; } int main(){ register int i; n=readint(); for(i=1;i<=n;i++){ pr[i][0]=readint(); pr[i][1]=readint(); order1[i]=i; order2[i]=i; } sort(order1+1,order1+1+n,cmp1); sort(order2+1,order2+1+n,cmp2); for(i=1;i<=n;i++){ if(i!=1){ Add_Edge(order1[i],order1[i-1],pr[order1[i]][0]-pr[order1[i-1]][0]); Add_Edge(order2[i],order2[i-1],pr[order2[i]][1]-pr[order2[i-1]][1]); } if(i!=n){ Add_Edge(order1[i],order1[i+1],pr[order1[i+1]][0]-pr[order1[i]][0]); Add_Edge(order2[i],order2[i+1],pr[order2[i+1]][1]-pr[order2[i]][1]); } } printf("%d\n",dij()); return 0; }
[BZOJ 1001]狼抓兔子
终于A了!
再给大家欣赏一下zzs这个逗比百折不挠的卡评记录(一页半慎看):
这道题就是平面图转对偶图的恶心题~
zzs在此列出此题坑点,望后人警觉:
- 最好写一个定位函数,不然点的位置很容易混。
- 不要用SPFA,不然会被卡。
- m等于1或n等于1的情况需要特判!
- 不要用边表,内存开销太惊人……
- 用邻接表的话,不要像zzs这个逗比一样开小内存……
代码: