[BZOJ 3512]DZY Loves Math IV
给定正整数\(n, m\),求\(\sum_{i = 1}^n\sum_{j = 1}^m \varphi(ij)\),膜\(10^9+7\)输出。
\(n\leq 10^5, m\leq 10^9\)。
[BZOJ 4916]神犇与蒟蒻
给定\(n\),分别求出\(\mu(x^2)\)和\(\varphi(x^2)\)的前\(n\)项和。
\(1\leq n\leq 10^9\)。
[LibreOJ 2803][CCC2018]平衡树
假设每个结点都有正整数权值,那么我们定义完美平衡树:权值为\(1\)的单点树是完美平衡树;根的权值为\(w(w\geq 2)\)的话,那么它一定有\(k(2\leq k\leq w)\)个子树,每个子树要完全一致,并且每个子树的根权值都要是\(\lfloor\frac{w}{k}\rfloor\)。
给定\(N\),计算根权值为\(N\)的完美平衡树的数量。
\(1\leq N\leq 10^9\)。
[51Nod 1220]约数之和
沿用约数个数和一题的思路……可以列出此式:
\[\sigma_1(ij) = \sum_{a | i}\sum_{b | j} ab[\gcd(\frac{i}{a}, b) = 1]\]
然后我们考虑去化简原式:
\[
\begin{aligned}
\sum_{i = 1}^n\sum_{j = 1}^n\sum_{a | i}\sum_{b | j} ab\sum_{d | \frac{i}{a}, d | j}\mu(d)
\end{aligned}
\]
接下来我们考虑枚举\(d\),但是\(a\)和\(b\)的贡献又有点麻烦了……
\(b\)的贡献还好说,直接枚举\(b\)本身是\(d\)的多少倍就是\(\sum_{b = 1}^{\lfloor\frac{n}{d}\rfloor} bd\lfloor\frac{n}{bd}\rfloor\)。那\(a\)的贡献如何考虑?
我们考虑直接去枚举\(a\)本身……可以注意到一定有\(a\le\lfloor\frac{n}{d}\rfloor\)(因为\(\frac{i}{a}\ge d\)),所以直接枚举\(a\)本身之后再考虑\(\lfloor\frac{n}{a}\rfloor\)范围内\(d\)的倍数的数量即可(相当于找\(\frac{i}{a}\)),因此贡献为\(\sum_{a = 1}^{\lfloor\frac{n}{d}\rfloor} a\lfloor\frac{n}{ad}\rfloor\)。
那么继续化简原式:
\[
\begin{aligned}
\quad&\sum_{d = 1}^n\mu(d)\sum_{b = 1}^{\lfloor\frac{n}{d}\rfloor} bd\lfloor\frac{n}{bd}\rfloor\sum_{a = 1}^{\lfloor\frac{n}{d}\rfloor} a\lfloor\frac{n}{ad}\rfloor\\
=&\sum_{d = 1}^n\mu(d)d(\sum_{i = 1}^{\lfloor\frac{n}{d}\rfloor} i\lfloor\frac{n}{id}\rfloor)^2\\
=&\sum_{d = 1}^n\mu(d)d S_1^2(\lfloor\frac{n}{d}\rfloor)
\end{aligned}
\]
此处\(S_1\)表示\(\sigma_1\)的前缀和。
接下来预处理\(\mu(d)d\)的前缀和,考虑杜教筛。我们发现该函数和\(\mathrm{id}\)卷出来就是\(\epsilon\)(证明可以考虑贝尔级数……这种方式非常有效,并且还能帮我们找到需要卷的函数,我有时间会专门撰文写一下),所以杜教筛一波即可。这部分总复杂度为\(O(n^{\frac{2}{3}})\)。
至于\(S_1\),我们考虑不大于\(n^{\frac{2}{3}}\)可以直接预处理,剩下的用时就用\(O(\sqrt{n})\)的方法求(考虑到反演不会用到\(S_1\)的重复状态所以不需要记忆化)。用类似于杜教筛复杂度证明的方法可以证明该部分总复杂度为\(O(n^{\frac{2}{3}})\)。
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <algorithm> #include <functional> #include <utility> #include <unordered_map> const int N = 1000000; using ll = long long; const ll ha = 1000000007LL; const ll i2 = 500000004LL; ll mud[N + 5], sig_1[N + 5]; int prm[N + 5]; bool vis[N + 5]; void sieve() { int cnt = 0; mud[1] = 1; for(int i = 2; i <= N; i ++) { if(!vis[i]) { mud[i] = (ha - i); prm[cnt ++] = i; } for(int j = 0; j < cnt; j ++) { int v = i * prm[j]; if(v > N) break; vis[v] = true; if(i % prm[j] == 0) { mud[v] = 0; break; } else { mud[v] = (mud[i] * mud[prm[j]]) % ha; } } } for(int i = 1; i <= N; i ++) { for(int j = i; j <= N; j += i) { sig_1[j] = (sig_1[j] + (ll(i))) % ha; } } for(int i = 1; i <= N; i ++) { mud[i] = (mud[i - 1] + mud[i]) % ha; sig_1[i] = (sig_1[i - 1] + sig_1[i]) % ha; } } std::unordered_map<ll, ll> ma; ll calc_id(ll x) { ll v1 = x, v2 = x + 1LL; if(x & 1LL) { v2 /= 2LL; } else { v1 /= 2LL; } return ((v1 * v2) % ha); } ll calc_mud(ll n) { if(n <= (ll(N))) return mud[n]; if(ma.count(n)) return ma[n]; ll ans = 1, las = 1; for(ll i = 2; i <= n;) { ll next = n / (n / i); ll nv = calc_id(next); ll ns = (nv - las + ha) % ha; ans = (ans - (ns * calc_mud(n / i)) % ha + ha) % ha; las = nv; i = next + 1LL; } ma[n] = ans; return ans; } ll calc_s1(ll n) { if(n <= (ll(N))) return sig_1[n]; ll ans = 0, las = 0; for(ll i = 1; i <= n;) { ll next = n / (n / i); ll nv = calc_id(next); ll ns = (nv - las + ha) % ha; ans = (ans + (ns * (n / i)) % ha) % ha; las = nv; i = next + 1LL; } return ans; } ll calc(ll n) { ll ans = 0, las = 0; for(ll i = 1; i <= n;) { ll next = n / (n / i); ll nv = calc_mud(next); ll ns = (nv - las + ha) % ha; ll pv = calc_s1(n / i); pv = (pv * pv) % ha; ans = (ans + (ns * pv) % ha) % ha; las = nv; i = next + 1LL; } return ans; } int main() { sieve(); ll n; scanf("%lld", &n); printf("%lld\n", calc(n)); return 0; }
[51Nod 1237]最大公约数之和 V3
首先这个题和能量采集几乎完全一致……稍微有点反演常识的人都知道答案事\(\sum_{i = 1}^n\varphi(i)\lfloor\frac{n}{i}\rfloor^2\),然后你需要用\(\varphi\)的前缀和,这个东西直接杜教筛搞一波就行了。这样总复杂度事\(O(n^{\frac{2}{3}})\)的,下面给出证明。
先考虑杜教筛的部分。杜教筛可以看做一个转移复杂度为\(O(\sqrt{n})\)的DP,他的状态一定是通过总的\(n\)整除一个数得到的。不大于\(n^{\frac{2}{3}}\)的状态我们都事先预处理,那么我们假设所有大于\(n^{\frac{2}{3}}\)的状态都被计算了一遍,这些状态一定事通过\(n\)整除一个不大于\(n^{\frac{1}{3}}\)的数得到的。因此复杂度为:
\[\sum_{i = 1}^{n^{\frac{1}{3}}} \sqrt{\lfloor\frac{n}{i}\rfloor}\leq \int_0^{n^{\frac{1}{3}}} \sqrt{\frac{n}{x}}\mathrm{d}x = 2n^{\frac{2}{3}} = O(n^{\frac{2}{3}})\]
至于莫比乌斯反演,不考虑杜教筛的复杂度的话就只是\(O(\sqrt{n})\)而已了。
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <cmath> #include <algorithm> #include <functional> #include <unordered_map> #include <utility> using ll = long long; constexpr ll ha = 1000000007LL; ll pow_mod(ll a, ll b) { ll ans = 1, res = a; while(b) { if(1LL & b) ans = (ans * res) % ha; res = (res * res) % ha; b >>= 1; } return ans; } ll inv(ll x) { return pow_mod(x, ha - 2LL); } const int N = 10000000; ll phi[N + 1]; int prm[N + 1]; bool vis[N + 1]; void sieve() { phi[1] = 1; vis[1] = true; int cnt = 0; for(int i = 2; i <= N; i ++) { if(!vis[i]) { phi[i] = i - 1; prm[cnt ++] = i; } for(int j = 0; j < cnt; j ++) { int v = i * prm[j]; if(v > N) break; vis[v] = true; if(i % prm[j] == 0) { phi[v] = phi[i] * prm[j]; break; } else { phi[v] = phi[i] * phi[prm[j]]; } } } for(int i = 1; i <= N; i ++) { phi[i] = (phi[i] + phi[i - 1]) % ha; } } std::unordered_map<ll, ll> ma; const ll i2 = inv(2LL); ll phi_sum(ll n) { if(n <= (ll(N))) return phi[n]; if(ma.count(n)) return ma[n]; ll fg = (n % ha) * ((n + 1LL) % ha) % ha * i2 % ha; for(ll i = 2; i <= n;) { ll next = n / (n / i); ll len = (next - i + 1LL) % ha; fg = (fg - (len * phi_sum(n / i)) % ha + ha) % ha; i = next + 1LL; } ma[n] = fg; return fg; } ll calc(ll n) { ll ans = 0, las = 0; for(ll i = 1; i <= n;) { ll next = n / (n / i); ll b = ((n / i) % ha) * ((n / i) % ha) % ha; ll ns = phi_sum(next); ans = (ans + (((ns - las + ha) % ha) * b % ha)) % ha; las = ns; i = next + 1LL; } return ans; } int main() { sieve(); ll n; scanf("%lld", &n); printf("%lld\n", calc(n)); return 0; }
[BZOJ 3944]Sum
杜教筛模板题……(然而常数卡卡卡)
我还是讲一讲基础的东西吧……
先考虑求欧拉函数的前缀和,我们先找一个它的卷积(这里用\(f=\varphi\ast 1\),且设\(g = 1\)),发现有(用\(S\)表示原函数的前缀和):
\[\sum_{i = 1}^n f(i) = \sum_{i = 1}^n g(i)\times S(\lfloor\frac{n}{i}\rfloor) = \frac{n(n + 1)}{2}\]
第二个和式的第一项是\(g(1)\times S(n) = S(n)\),也就是我们需要的答案。这样的话我们把第一项分割出来,后面的项大力求,然后用\(\frac{n(n + 1)}{2}\)减去那些项就得到了第一项。并且注意到\(\lfloor\frac{n}{i}\rfloor\)的取值种类是\(\sqrt{n}\)级别的,又可以大力优化一波。然后考虑预处理\(O(n^{\frac{2}{3}})\)级别的前缀和(时间和空间都允许),再优化一波。然后考虑把没预处理的状态扔一个哈希表里(反正看起来不会很多),又优化一波……
这样复杂度就是\(O(n^{\frac{2}{3}})\)的了……(又不会证了)
求莫比乌斯函数的前缀和的方法类似(并且更简单一点)……
代码(又被卡成苟了):
/************************************************************** Problem: 3944 User: danihao123 Language: C++ Result: Accepted Time:11292 ms Memory:127740 kb ****************************************************************/ #include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/hash_policy.hpp> typedef long long ll; const int N = 3500000; const int maxn = N + 5; ll phi[maxn], phi_S[maxn]; ll mu[maxn], mu_S[maxn]; void sieve() { static bool vis[maxn]; static int prm[maxn]; int cnt = 0; phi[1] = 1; mu[1] = 1; for(int i = 2; i <= N; i ++) { if(!vis[i]) { prm[cnt ++] = i; mu[i] = -1; phi[i] = i - 1; } for(int j = 0; j < cnt && prm[j] * (ll(i)) <= (ll(N)); j ++) { int v = prm[j] * i; vis[v] = true; if(i % prm[j] == 0) { mu[v] = 0; phi[v] = phi[i] * prm[j]; break; } else { mu[v] = mu[i] * -1; phi[v] = phi[i] * phi[prm[j]]; } } } for(int i = 1; i <= N; i ++) { phi_S[i] = phi_S[i - 1] + phi[i]; mu_S[i] = mu_S[i - 1] + mu[i]; } } __gnu_pbds::gp_hash_table<ll, ll> mu_d; ll mu_sum(ll n) { if(n <= (ll(N))) return mu_S[n]; if(mu_d.find(n) != mu_d.end()) { return mu_d[n]; } ll ans = 1; for(ll i = 2; i <= n;) { ll nx = n / (n / i); ans -= (nx - i + 1LL) * mu_sum(n / i); i = nx + 1LL; } mu_d[n] = ans; return ans; } ll pre_sum(ll n) { return (n * (n + 1LL) / 2LL); } __gnu_pbds::gp_hash_table<ll, ll> phi_d; ll phi_sum(ll n) { if(n <= (ll(N))) return phi_S[n]; if(phi_d.find(n) != phi_d.end()) { return phi_d[n]; } ll ans = pre_sum(n); for(ll i = 2; i <= n;) { ll nx = n / (n / i); ans -= (nx - i + 1LL) * phi_sum(n / i); i = nx + 1LL; } phi_d[n] = ans; return ans; } int main() { sieve(); int T; scanf("%d", &T); while(T --) { int n; scanf("%d", &n); printf("%lld %lld\n", phi_sum(n), mu_sum(n)); } return 0; }