[LibreOJ 2353][NOI2007]货币兑换
emmm做了一下这道神题……(我可能是少有的用动态凸包苟的?)
首先DP方程长这样:
\[f_i = max(f_{i - 1}, f_j\cdot\frac{A_iR_j+B_i}{A_jR_j+B_j})\]
然后这个方程炒鸡复杂……首先\(f_{i - 1}\)不要管了,然后设\(a_i = \frac{f_i}{A_iR_i + B_i}\)。在xjb推了一番之后我们终于得到了截距式……
\[-a_j R_j \frac{A_i}{B_i} + \frac{f_i}{B_i} = a_j\]
但是这玩意太毒瘤了……斜率不可能单调的,这还好,在凸壳上二分/三分一下即可。但问题在于,横坐标也不单调……
这个时候就需要动态维护凸包了(其实是我不会CDQ),我直接把我向量集那题的二进制分组线段树搬了过来……(逃
代码:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <utility>
#include <vector>
#include <cmath>
#include <climits>
#include <deque>
#include <cassert>
using R = double;
const R eps = 1e-8;
int sign(R x) {
if(fabs(x) < eps) {
return 0;
} else {
if(x > 0.00) {
return 1;
} else {
return -1;
}
}
}
struct Point {
R x, y;
Point(R qx = 0, R qy = 0) {
x = qx; y = qy;
}
};
using Vector = Point;
Vector operator +(const Vector &a, const Vector &b) {
return Vector(a.x + b.x, a.y + b.y);
}
Vector operator -(const Point &a, const Point &b) {
return Vector(b.x - a.x, b.y - a.y);
}
Vector operator *(const Vector &a, R lam) {
return Vector(a.x * lam, a.y * lam);
}
Vector operator *(R lam, const Vector &a) {
return Vector(a.x * lam, a.y * lam);
}
inline R dot(const Vector &a, const Vector &b) {
return (a.x * b.x + a.y * b.y);
}
inline R times(const Vector &a, const Vector &b) {
return (a.x * b.y - a.y * b.x);
}
inline bool cmp(const Point &a, const Point &b) {
if(sign(a.x - b.x) == 0) {
return a.y < b.y;
} else {
return a.x < b.x;
}
}
inline void andrew(Point *P, int L, std::vector<Point> &bot, std::vector<Point> &top) {
std::sort(P + 1, P + 1 + L, cmp);
for(int i = 1; i <= L; i ++) {
if(i != 1 && sign(P[i].x - P[i - 1].x) == 0) continue;
while(bot.size() > 1 && sign(times(P[i] - bot.back(), bot.back() - bot[bot.size() - 2])) >= 0) {
bot.pop_back();
}
bot.push_back(P[i]);
}
for(int i = L; i >= 1; i --) {
if(i != L && sign(P[i].x - P[i + 1].x) == 0) continue;
while(top.size() > 1 && sign(times(P[i] - top.back(), top.back() - top[top.size() - 2])) >= 0) {
top.pop_back();
}
top.push_back(P[i]);
}
std::reverse(top.begin(), top.end());
}
const int maxn = 1000005;
const int N = 1000000;
const int maxno = maxn << 2;
bool zen[maxno];
std::vector<Point> bot[maxno], top[maxno];
Point P[maxn];
inline void maintain(int o, int L, int R) {
static Point tmp[maxn];
const int lc = o << 1, rc = o << 1 | 1;
const bool used = zen[o];
zen[o] = (zen[lc] && zen[rc]);
if(zen[o] != used) {
std::copy(P + L, P + R + 1, tmp + 1);
int len = R - L + 1;
andrew(tmp, len, bot[o], top[o]);
}
}
void modify(int o, int L, int R, const int &p, const Point &v) {
if(L == R) {
zen[o] = true;
P[L] = v;
bot[o].push_back(v); top[o].push_back(v);
} else {
const int M = (L + R) / 2;
if(p <= M) {
modify(o << 1, L, M, p, v);
} else {
modify(o << 1 | 1, M + 1, R, p, v);
}
maintain(o, L, R);
}
}
inline R calc_ans(R k, const Point &v) {
return v.y - k * v.x;
}
inline R search(const std::vector<Point> &vec, const R &k) {
int l = 0, r = vec.size() - 1;
while(r - l > 2) {
int lm = (l * 2 + r) / 3, rm = (2 * r + l) / 3;
if(sign(calc_ans(k, vec[lm]) - calc_ans(k, vec[rm])) == 1) {
r = rm;
} else {
l = lm;
}
}
R ans = INT_MIN;
for(int i = l; i <= r; i ++) {
ans = std::max(ans, calc_ans(k, vec[i]));
}
return ans;
}
R query(int o, int L, int R, const int &ql, const int &qr, const double &k) {
if(ql <= L && R <= qr) {
return search(top[o], k);
} else {
int M = (L + R) / 2;
double ans = INT_MIN;
if(ql <= M) {
ans = std::max(ans, query(o << 1, L, M, ql, qr, k));
}
if(qr > M) {
ans = std::max(ans, query(o << 1 | 1, M + 1, R, ql, qr, k));
}
return ans;
}
}
int n, s;
R A[maxn], B[maxn], Rate[maxn];
R f[maxn];
R dp() {
static double a[maxn];
f[0] = s; f[1] = s; a[1] = f[1] / (A[1] * Rate[1] + B[1]);
modify(1, 1, n, 1, Point(a[1] * Rate[1], a[1]));
for(int i = 2; i <= n; i ++) {
f[i] = query(1, 1, n, 1, i - 1, -A[i] / B[i]) * B[i];
f[i] = std::max(f[i], f[i - 1]);
a[i] = f[i] / (A[i] * Rate[i] + B[i]);
if(i < n) modify(1, 1, n, i, Point(a[i] * Rate[i], a[i]));
}
return f[n];
}
int main() {
scanf("%d%d", &n, &s);
for(int i = 1; i <= n; i ++) {
scanf("%lf%lf%lf", &A[i], &B[i], &Rate[i]);
}
printf("%.3lf\n", dp());
return 0;
}