[LibreOJ 2353][NOI2007]货币兑换
emmm做了一下这道神题……(我可能是少有的用动态凸包苟的?)
首先DP方程长这样:
fi=max(fi−1,fj⋅AiRj+BiAjRj+Bj)
然后这个方程炒鸡复杂……首先fi−1不要管了,然后设ai=fiAiRi+Bi。在xjb推了一番之后我们终于得到了截距式……
−ajRjAiBi+fiBi=aj
但是这玩意太毒瘤了……斜率不可能单调的,这还好,在凸壳上二分/三分一下即可。但问题在于,横坐标也不单调……
这个时候就需要动态维护凸包了(其实是我不会CDQ),我直接把我向量集那题的二进制分组线段树搬了过来……(逃
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | #include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <vector> #include <cmath> #include <climits> #include <deque> #include <cassert> using R = double ; const R eps = 1e-8; int sign(R x) { if ( fabs (x) < eps) { return 0; } else { if (x > 0.00) { return 1; } else { return -1; } } } struct Point { R x, y; Point(R qx = 0, R qy = 0) { x = qx; y = qy; } }; using Vector = Point; Vector operator +( const Vector &a, const Vector &b) { return Vector(a.x + b.x, a.y + b.y); } Vector operator -( const Point &a, const Point &b) { return Vector(b.x - a.x, b.y - a.y); } Vector operator *( const Vector &a, R lam) { return Vector(a.x * lam, a.y * lam); } Vector operator *(R lam, const Vector &a) { return Vector(a.x * lam, a.y * lam); } inline R dot( const Vector &a, const Vector &b) { return (a.x * b.x + a.y * b.y); } inline R times( const Vector &a, const Vector &b) { return (a.x * b.y - a.y * b.x); } inline bool cmp( const Point &a, const Point &b) { if (sign(a.x - b.x) == 0) { return a.y < b.y; } else { return a.x < b.x; } } inline void andrew(Point *P, int L, std::vector<Point> &bot, std::vector<Point> &top) { std::sort(P + 1, P + 1 + L, cmp); for ( int i = 1; i <= L; i ++) { if (i != 1 && sign(P[i].x - P[i - 1].x) == 0) continue ; while (bot.size() > 1 && sign(times(P[i] - bot.back(), bot.back() - bot[bot.size() - 2])) >= 0) { bot.pop_back(); } bot.push_back(P[i]); } for ( int i = L; i >= 1; i --) { if (i != L && sign(P[i].x - P[i + 1].x) == 0) continue ; while (top.size() > 1 && sign(times(P[i] - top.back(), top.back() - top[top.size() - 2])) >= 0) { top.pop_back(); } top.push_back(P[i]); } std::reverse(top.begin(), top.end()); } const int maxn = 1000005; const int N = 1000000; const int maxno = maxn << 2; bool zen[maxno]; std::vector<Point> bot[maxno], top[maxno]; Point P[maxn]; inline void maintain( int o, int L, int R) { static Point tmp[maxn]; const int lc = o << 1, rc = o << 1 | 1; const bool used = zen[o]; zen[o] = (zen[lc] && zen[rc]); if (zen[o] != used) { std::copy(P + L, P + R + 1, tmp + 1); int len = R - L + 1; andrew(tmp, len, bot[o], top[o]); } } void modify( int o, int L, int R, const int &p, const Point &v) { if (L == R) { zen[o] = true ; P[L] = v; bot[o].push_back(v); top[o].push_back(v); } else { const int M = (L + R) / 2; if (p <= M) { modify(o << 1, L, M, p, v); } else { modify(o << 1 | 1, M + 1, R, p, v); } maintain(o, L, R); } } inline R calc_ans(R k, const Point &v) { return v.y - k * v.x; } inline R search( const std::vector<Point> &vec, const R &k) { int l = 0, r = vec.size() - 1; while (r - l > 2) { int lm = (l * 2 + r) / 3, rm = (2 * r + l) / 3; if (sign(calc_ans(k, vec[lm]) - calc_ans(k, vec[rm])) == 1) { r = rm; } else { l = lm; } } R ans = INT_MIN; for ( int i = l; i <= r; i ++) { ans = std::max(ans, calc_ans(k, vec[i])); } return ans; } R query( int o, int L, int R, const int &ql, const int &qr, const double &k) { if (ql <= L && R <= qr) { return search(top[o], k); } else { int M = (L + R) / 2; double ans = INT_MIN; if (ql <= M) { ans = std::max(ans, query(o << 1, L, M, ql, qr, k)); } if (qr > M) { ans = std::max(ans, query(o << 1 | 1, M + 1, R, ql, qr, k)); } return ans; } } int n, s; R A[maxn], B[maxn], Rate[maxn]; R f[maxn]; R dp() { static double a[maxn]; f[0] = s; f[1] = s; a[1] = f[1] / (A[1] * Rate[1] + B[1]); modify(1, 1, n, 1, Point(a[1] * Rate[1], a[1])); for ( int i = 2; i <= n; i ++) { f[i] = query(1, 1, n, 1, i - 1, -A[i] / B[i]) * B[i]; f[i] = std::max(f[i], f[i - 1]); a[i] = f[i] / (A[i] * Rate[i] + B[i]); if (i < n) modify(1, 1, n, i, Point(a[i] * Rate[i], a[i])); } return f[n]; } int main() { scanf ( "%d%d" , &n, &s); for ( int i = 1; i <= n; i ++) { scanf ( "%lf%lf%lf" , &A[i], &B[i], &Rate[i]); } printf ( "%.3lf\n" , dp()); return 0; } |