[SWERC2015]Saint John Festival
第一次做像点样子的计算几何吧……
很显然要包含在某个三角形里,就要被包含在大点的凸包里。所以求出大点组成的凸包,然后对于所有小点判断它是否在那个凸包里即可。
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <deque> #include <cmath> #include <vector> using R = double; const R eps = 1e-8; int sign(R x) { if(fabs(x) < eps) { return 0; } else { if(x < 0) return -1; else return 1; } } struct Point { R x, y; Point(R qx = 0, R qy = 0) { x = qx; y = qy; } }; typedef Point Vector; Vector operator +(const Vector &a, const Vector &b) { return Vector(a.x + b.x, a.y + b.y); } Vector operator -(const Point &a, const Point &b) { return Vector(a.x - b.x, a.y - b.y); } R dot(const Vector &a, const Vector &b) { return a.x * b.x + a.y * b.y; } R times(const Vector &a, const Vector &b) { return a.x * b.y - a.y * b.x; } bool cmp(const Point &a, const Point &b) { if(sign(a.x - b.x) == 0) { return a.y < b.y; } else { return a.x < b.x; } } const int maxn = 10005; Point P[maxn]; int L; std::vector<Point> bot, top; void andrew() { // bot.resize(L); top.resize(L); std::sort(P + 1, P + 1 + L, cmp); for(int i = 1; i <= L; i ++) { if(i != 1 && sign(P[i].x - P[i - 1].x) == 0) continue; while(bot.size() > 1 && sign(times(P[i] - bot.back(), bot.back() - bot[bot.size() - 2])) >= 0) { bot.pop_back(); } bot.push_back(P[i]); } for(int i = L; i >= 1; i --) { if(i != L && sign(P[i].x - P[i + 1].x) == 0) continue; while(top.size() > 1 && sign(times(P[i] - top.back(), top.back() - top[top.size() - 2])) >= 0) { top.pop_back(); } top.push_back(P[i]); } std::reverse(top.begin(), top.end()); #ifdef LOCAL printf("top :"); for(auto p : top) { printf(" (%.3f, %.3f)", p.x, p.y); } puts(""); printf("bot :"); for(auto p : bot) { printf(" (%.3f, %.3f)", p.x, p.y); } puts(""); #endif } R get_p(Point l, Point r, R x) { R delta = x - l.x; R k = (r.y - l.y) / (r.x - l.x); #ifdef LOCAL printf("k between (%.2lf, %.2lf) and (%.2lf, %.2lf) : %.5lf\n", l.x, l.y, r.x, r.y, k); #endif return l.y + k * delta; } bool cmp2(const Point &a, const Point &b) { return sign(a.x - b.x) == -1; } bool query(const Point &p) { if(sign(top.front().x - p.x) == 1 || sign(p.x - top.back().x) == 1) return false; auto lp = (std::lower_bound(bot.begin(), bot.end(), p, cmp2)); auto rp = (std::lower_bound(top.begin(), top.end(), p, cmp2)); R l; if(sign((*lp).x - p.x) == 0) { l = (*lp).y; } else { auto lp2 = lp - 1; l = get_p(*lp2, *lp, p.x); } R r; if(sign((*rp).x - p.x) == 0) { r = (*rp).y; } else { auto rp2 = rp - 1; r = get_p(*rp2, *rp, p.x); } #ifdef LOCAL printf("bd of (%.2lf, %.2lf) : [%.2lf, %.2lf]\n", p.x, p.y, l, r); #endif return (sign(l - p.y) <= 0 && sign(p.y - r) <= 0); } int main() { scanf("%d", &L); for(int i = 1; i <= L; i ++) { scanf("%lf%lf", &P[i].x, &P[i].y); } andrew(); int S; scanf("%d", &S); int cnt = 0; while(S --) { R x, y; scanf("%lf%lf", &x, &y); Point p(x, y); if(query(p)) cnt ++; } printf("%d\n", cnt); return 0; }