[BZOJ 2115][Wc2011]Xor
这个可以有啊(赞赏)!
我们可以发现如果两点间如果有多条路径,那么任意两条路径在一个简单环里。
然后我们还发现,如果说是一个路径,一个环和这个路径有交边,那么走这个环走很多次没有意义(其实相当于从环的两边选一边走)。
然后这样可以发现,用$1$到$n$的路径来异或一个环,可以得到新的一条$1$到$n$的路径。
这样我们可以用DFS树来求出图上所有简单环的异或和,求出其线性基,然后随便找条$1$到$n$的路径,问题就变成了求这条路径和那个线性基的异或和最大是多少。然后这就是线性基乱搞好了……
代码:
/************************************************************** Problem: 2115 User: danihao123 Language: C++ Result: Accepted Time:652 ms Memory:6544 kb ****************************************************************/ #include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <queue> #include <set> #include <vector> typedef long long ll; const int maxn = 50005; const int maxm = maxn << 2; int first[maxn]; int next[maxm], to[maxm]; ll dist[maxm]; int rev[maxm]; int add_edge(int u, int v, ll d) { static int cnt = 0; cnt ++; next[cnt] = first[u]; first[u] = cnt; to[cnt] = v; dist[cnt] = d; return cnt; } void ins_edge(int u, int v, ll d) { int e1 = add_edge(u, v, d); int e2 = add_edge(v, u, d); rev[e1] = e2; rev[e2] = e1; } const int maxb = 61; ll T[maxb]; void insert(ll x) { for(int i = 60; i >= 0; i --) { if(!x) break; if((x & (1LL << i)) == 0) continue; if(T[i]) { x ^= T[i]; } else { for(int j = i - 1; j >= 0; j --) { if(x & (1LL << j)) { x ^= T[j]; } } for(int j = i + 1; j < maxb; j ++) { if(T[j] & (1LL << i)) { T[j] ^= x; } } T[i] = x; break; } } } ll sum[maxn]; bool vis[maxn], used[maxm]; void dfs(int x, ll s) { vis[x] = true; sum[x] = s; for(int i = first[x]; i; i = next[i]) { if(used[i]) continue; int v = to[i]; used[i] = used[rev[i]] = true; if(vis[v]) { insert((s ^ sum[v]) ^ dist[i]); } else { dfs(v, s ^ dist[i]); } } } #ifdef LOCAL #define LO "%I64d" #else #define LO "%lld" #endif int main() { int n, m; scanf("%d%d", &n, &m); for(int i = 1; i <= m; i ++) { int u, v; ll d; scanf("%d%d", &u, &v); scanf(LO, &d); ins_edge(u, v, d); } dfs(1, 0LL); ll ret = sum[n]; for(int i = 60; i >= 0; i --) { if(!T[i]) continue; if(!(ret & (1LL << i))) { ret ^= T[i]; } } printf(LO, ret); puts(""); return 0; }
[BZOJ 2662]冻结
又是一道分层图最短路水题……
我估计会卡SPFA(或许可能不卡?),所以再次写了pb_ds优化Dijkstra。
代码:
/************************************************************** Problem: 2662 User: danihao123 Language: C++ Result: Accepted Time:4 ms Memory:868 kb ****************************************************************/ #include <cstdio> #include <cctype> #include <cstring> #include <utility> #include <ext/pb_ds/priority_queue.hpp> #include <bitset> #include <algorithm> using namespace std; const int maxn=51,maxk=51,maxm=2005; int cnt=0; int first[maxn]; int to[maxm],next[maxm]; int dist[maxm]; inline void Add_Edge(int x,int y,int z){ cnt++; next[cnt]=first[x]; first[x]=cnt; to[cnt]=y; dist[cnt]=z; } int d[maxn][maxk]; bitset<maxn> vis[maxk]; struct Node{ int x,k,d; bool operator <(const Node& itt) const{ return d<itt.d; } bool operator >(const Node& itt) const{ return d>itt.d; } }; typedef __gnu_pbds::priority_queue<Node,greater<Node> > Heap; Heap::point_iterator ite[maxn][maxk]; Heap Q; int n,k; inline void relax(int x,int y,int p){ d[x][y]=p; if(ite[x][y]!=0) Q.modify(ite[x][y],(Node){x,y,p}); else ite[x][y]=Q.push((Node){x,y,p}); } int dij(){ register int i,u,v,ans=0x7f7f7f7f; memset(d,0x7f,sizeof(d)); d[1][0]=0; ite[1][0]=Q.push((Node){1,0,0}); while(!Q.empty()){ u=Q.top().x; v=Q.top().k; Q.pop(); if(vis[u][v]) continue; vis[u][v]=true; for(i=first[u];i;i=next[i]){ if(v<k){ if(d[to[i]][v+1]>(d[u][v]+dist[i]/2)){ relax(to[i],v+1,d[u][v]+dist[i]/2); } } if(d[to[i]][v]>d[u][v]+dist[i]){ relax(to[i],v,d[u][v]+dist[i]); } } } for(i=0;i<=k;i++) ans=min(ans,d[n][i]); return ans; } // I/O优化 inline int readint(){ char c=getchar(); register int x=0; while(!isdigit(c)) c=getchar(); while(isdigit(c)){ x=x*10+c-'0'; c=getchar(); } return x; } int bf[10]; inline void writeint(int x){ register int p=0; if(x==0){ bf[p++]=0; }else{ while(x){ bf[p++]=x%10; x/=10; } } for(register int i=p-1;i>=0;i--) putchar('0'+bf[i]); } int main(){ int m; register int i,u,v,d; n=readint(); m=readint(); k=readint(); for(i=1;i<=m;i++){ u=readint(); v=readint(); d=readint(); Add_Edge(u,v,d); Add_Edge(v,u,d); } writeint(dij()); putchar('\n'); return 0; }