[LibreOJ 2353][NOI2007]货币兑换
emmm做了一下这道神题……(我可能是少有的用动态凸包苟的?)
首先DP方程长这样:
\[f_i = max(f_{i - 1}, f_j\cdot\frac{A_iR_j+B_i}{A_jR_j+B_j})\]
然后这个方程炒鸡复杂……首先\(f_{i - 1}\)不要管了,然后设\(a_i = \frac{f_i}{A_iR_i + B_i}\)。在xjb推了一番之后我们终于得到了截距式……
\[-a_j R_j \frac{A_i}{B_i} + \frac{f_i}{B_i} = a_j\]
但是这玩意太毒瘤了……斜率不可能单调的,这还好,在凸壳上二分/三分一下即可。但问题在于,横坐标也不单调……
这个时候就需要动态维护凸包了(其实是我不会CDQ),我直接把我向量集那题的二进制分组线段树搬了过来……(逃
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <vector> #include <cmath> #include <climits> #include <deque> #include <cassert> using R = double; const R eps = 1e-8; int sign(R x) { if(fabs(x) < eps) { return 0; } else { if(x > 0.00) { return 1; } else { return -1; } } } struct Point { R x, y; Point(R qx = 0, R qy = 0) { x = qx; y = qy; } }; using Vector = Point; Vector operator +(const Vector &a, const Vector &b) { return Vector(a.x + b.x, a.y + b.y); } Vector operator -(const Point &a, const Point &b) { return Vector(b.x - a.x, b.y - a.y); } Vector operator *(const Vector &a, R lam) { return Vector(a.x * lam, a.y * lam); } Vector operator *(R lam, const Vector &a) { return Vector(a.x * lam, a.y * lam); } inline R dot(const Vector &a, const Vector &b) { return (a.x * b.x + a.y * b.y); } inline R times(const Vector &a, const Vector &b) { return (a.x * b.y - a.y * b.x); } inline bool cmp(const Point &a, const Point &b) { if(sign(a.x - b.x) == 0) { return a.y < b.y; } else { return a.x < b.x; } } inline void andrew(Point *P, int L, std::vector<Point> &bot, std::vector<Point> &top) { std::sort(P + 1, P + 1 + L, cmp); for(int i = 1; i <= L; i ++) { if(i != 1 && sign(P[i].x - P[i - 1].x) == 0) continue; while(bot.size() > 1 && sign(times(P[i] - bot.back(), bot.back() - bot[bot.size() - 2])) >= 0) { bot.pop_back(); } bot.push_back(P[i]); } for(int i = L; i >= 1; i --) { if(i != L && sign(P[i].x - P[i + 1].x) == 0) continue; while(top.size() > 1 && sign(times(P[i] - top.back(), top.back() - top[top.size() - 2])) >= 0) { top.pop_back(); } top.push_back(P[i]); } std::reverse(top.begin(), top.end()); } const int maxn = 1000005; const int N = 1000000; const int maxno = maxn << 2; bool zen[maxno]; std::vector<Point> bot[maxno], top[maxno]; Point P[maxn]; inline void maintain(int o, int L, int R) { static Point tmp[maxn]; const int lc = o << 1, rc = o << 1 | 1; const bool used = zen[o]; zen[o] = (zen[lc] && zen[rc]); if(zen[o] != used) { std::copy(P + L, P + R + 1, tmp + 1); int len = R - L + 1; andrew(tmp, len, bot[o], top[o]); } } void modify(int o, int L, int R, const int &p, const Point &v) { if(L == R) { zen[o] = true; P[L] = v; bot[o].push_back(v); top[o].push_back(v); } else { const int M = (L + R) / 2; if(p <= M) { modify(o << 1, L, M, p, v); } else { modify(o << 1 | 1, M + 1, R, p, v); } maintain(o, L, R); } } inline R calc_ans(R k, const Point &v) { return v.y - k * v.x; } inline R search(const std::vector<Point> &vec, const R &k) { int l = 0, r = vec.size() - 1; while(r - l > 2) { int lm = (l * 2 + r) / 3, rm = (2 * r + l) / 3; if(sign(calc_ans(k, vec[lm]) - calc_ans(k, vec[rm])) == 1) { r = rm; } else { l = lm; } } R ans = INT_MIN; for(int i = l; i <= r; i ++) { ans = std::max(ans, calc_ans(k, vec[i])); } return ans; } R query(int o, int L, int R, const int &ql, const int &qr, const double &k) { if(ql <= L && R <= qr) { return search(top[o], k); } else { int M = (L + R) / 2; double ans = INT_MIN; if(ql <= M) { ans = std::max(ans, query(o << 1, L, M, ql, qr, k)); } if(qr > M) { ans = std::max(ans, query(o << 1 | 1, M + 1, R, ql, qr, k)); } return ans; } } int n, s; R A[maxn], B[maxn], Rate[maxn]; R f[maxn]; R dp() { static double a[maxn]; f[0] = s; f[1] = s; a[1] = f[1] / (A[1] * Rate[1] + B[1]); modify(1, 1, n, 1, Point(a[1] * Rate[1], a[1])); for(int i = 2; i <= n; i ++) { f[i] = query(1, 1, n, 1, i - 1, -A[i] / B[i]) * B[i]; f[i] = std::max(f[i], f[i - 1]); a[i] = f[i] / (A[i] * Rate[i] + B[i]); if(i < n) modify(1, 1, n, i, Point(a[i] * Rate[i], a[i])); } return f[n]; } int main() { scanf("%d%d", &n, &s); for(int i = 1; i <= n; i ++) { scanf("%lf%lf%lf", &A[i], &B[i], &Rate[i]); } printf("%.3lf\n", dp()); return 0; }
[LibreOJ 2197][SDOI2014]向量集
xjb写了写……我评测时候心脏跳得贼快(逃
考虑如果知道了那一段区间的凸包那么怎么做。首先如果向量是往上指的话,一定在上凸壳上找点比较好,反之则在下凸壳上找点比较好(放到坐标系里脑补一下?)。然后我们观察一点,在上凸壳上的最优解往两边的点会越来越劣,所以这玩意是个上凸函数,可以三分答案(我才学的整数三分啊)。
但区间凸包求起来复杂度很爆炸啊……考虑用线段树搞?观察到一点,我们区间查询所使用的线段树节点一定是只包含了已经加进来的点。所以说,一个线段树节点的凸包需要被求的情况只有一种,那就是这个节点完全已加入点被覆盖了。那每次修改之后看是否一个节点完全被已加入点覆盖,如果被完全覆盖的话才去求它的凸包。
这样一来,线段树上每个节点之多会被求一次凸包。线段树有\(\log n\)层,每一层所有节点的大小加起来是\(n\),所以求凸包耗费的总复杂度是\(n\log^2 n\)级别的。
其实这就是用线段树模拟二进制分组?
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <vector> #include <climits> #include <cassert> using ll = long long; using T = ll; struct Point { T x, y; Point(T qx = 0LL, T qy = 0LL) { x = qx; y = qy; } }; using Vector = Point; Vector operator +(const Vector &a, const Vector &b) { return Vector(a.x + b.x, a.y + b.y); } Vector operator -(const Point &a, const Point &b) { return Vector(a.x - b.x, a.y - b.y); } Vector operator *(const Vector &a, T lam) { return Vector(a.x * lam, a.y * lam); } Vector operator *(T lam, const Vector &a) { return Vector(a.x * lam, a.y * lam); } inline T dot(const Vector &a, const Vector &b) { return (a.x * b.x + a.y * b.y); } inline T times(const Vector &a, const Vector &b) { return (a.x * b.y - a.y * b.x); } inline bool cmp(const Point &a, const Point &b) { if((a.x - b.x) == 0LL) { return a.y < b.y; } else { return a.x < b.x; } } inline void andrew(Point *P, int L, std::vector<Point> &bot, std::vector<Point> &top) { std::sort(P + 1, P + 1 + L, cmp); for(int i = 1; i <= L; i ++) { if(i != 1 && (P[i].x - P[i - 1].x) == 0LL) continue; while(bot.size() > 1 && (times(P[i] - bot.back(), bot.back() - bot[bot.size() - 2])) >= 0LL) { bot.pop_back(); } bot.push_back(P[i]); } for(int i = L; i >= 1; i --) { if(i != L && (P[i].x - P[i + 1].x) == 0LL) continue; while(top.size() > 1 && (times(P[i] - top.back(), top.back() - top[top.size() - 2])) >= 0LL) { top.pop_back(); } top.push_back(P[i]); } std::reverse(top.begin(), top.end()); } const int maxn = 400005; const int maxno = maxn << 2; const int N = 400000; bool zen[maxno]; std::vector<Point> bot[maxno], top[maxno]; Point P[maxn]; inline void maintain(int o, int L, int R) { static Point tmp[maxn]; const int lc = o << 1, rc = o << 1 | 1; const bool used = zen[o]; zen[o] = (zen[lc] && zen[rc]); if(zen[o] != used) { std::copy(P + L, P + R + 1, tmp + 1); int len = R - L + 1; andrew(tmp, len, bot[o], top[o]); } } void modify(int o, int L, int R, const int &p, const Point &v) { if(L == R) { zen[o] = true; P[L] = v; bot[o].push_back(v); top[o].push_back(v); } else { const int M = (L + R) / 2; if(p <= M) { modify(o << 1, L, M, p, v); } else { modify(o << 1 | 1, M + 1, R, p, v); } maintain(o, L, R); } } inline T search(const std::vector<Point> &vec, const Point &p) { int l = 0, r = vec.size() - 1; while(r - l > 2) { int lm = (l * 2 + r) / 3, rm = (2 * r + l) / 3; if(dot(p, vec[lm]) > dot(p, vec[rm])) { r = rm; } else { l = lm; } } T ans = LLONG_MIN; for(int i = l; i <= r; i ++) { ans = std::max(ans, dot(p, vec[i])); } return ans; } T query(int o, int L, int R, const int &ql, const int &qr, const Point &p) { if(ql <= L && R <= qr) { if(p.y > 0LL) { return search(top[o], p); } else { return search(bot[o], p); } } else { int M = (L + R) / 2; T ans = LLONG_MIN; if(ql <= M) { ans = std::max(ans, query(o << 1, L, M, ql, qr, p)); } if(qr > M) { ans = std::max(ans, query(o << 1 | 1, M + 1, R, ql, qr, p)); } return ans; } } inline int decode(int x, long long lastans) { return x ^ (lastans & 0x7fffffff); } int main() { int q; char buf[4]; scanf("%d%s", &q, buf); bool typ_E = (buf[0] == 'E' && buf[1] == char(0)); T las = 0LL; int tot = 0; while(q --) { char op[4]; scanf("%s", op); if(op[0] == 'A') { T x, y; scanf("%lld%lld", &x, &y); if(!typ_E) { x = decode(x, las); y = decode(y, las); } tot ++; modify(1, 1, N, tot, Point(x, y)); } else { T x, y, l, r; scanf("%lld%lld%lld%lld", &x, &y, &l, &r); if(!typ_E) { x = decode(x, las); y = decode(y, las); l = decode(l, las); r = decode(r, las); } las = query(1, 1, N, l, r, Point(x, y)); printf("%lld\n", las); } } return 0; }
[BZOJ 1857][SCOI2010]传送带
三分套三分入门题……
策略肯定是从A走到AB上一点,然后再走到CD上的一个点,再向D走。
很显然答案函数是一个关于那两个点下凸的东西(不会证?GeoGebra之类的东西画一下就好啦!还不如像我这样口胡),所以我们可以先对第一维三分,然后套上对第二维的三分……
代码:
/************************************************************** Problem: 1857 User: danihao123 Language: C++ Result: Accepted Time:244 ms Memory:820 kb ****************************************************************/ #include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <cmath> typedef double R; const R eps = 1e-6; int sign(R x) { if(fabs(x) < eps) { return 0; } else { if(x < 0) return -1; else return 1; } } struct Point { R x, y; Point(R qx = 0, R qy = 0) { x = qx; y = qy; } }; typedef Point Vector; Vector operator +(const Vector &a, const Vector &b) { return Vector(a.x + b.x, a.y + b.y); } Vector operator -(const Point &a, const Point &b) { return Vector(a.x - b.x, a.y - b.y); } Vector operator *(R x, const Vector &v) { return Point(v.x * x, v.y * x); } Vector operator *(const Vector &v, R x) { return Point(v.x * x, v.y * x); } R dot(const Vector &a, const Vector &b) { return a.x * b.x + a.y * b.y; } R times(const Vector &a, const Vector &b) { return a.x * b.y - a.y * b.x; } R dist(const Point &a, const Point &b) { return sqrt(dot(a - b, a - b)); } bool cmp(const Point &a, const Point &b) { if(sign(a.x - b.x) == 0) { return a.y < b.y; } else { return a.x < b.x; } } Point A, B, C, D; R p, q, r; Vector D_AB, D_DC; R f(const Point &AB, const Point &CD) { return (dist(AB, A) / p + dist(CD, D) / q + dist(AB, CD) / r); } R F(Point AB) { R L = 0, R = 1; int T = 200; while(T --) { double M1 = L + (R - L) / 3; double M2 = R - (R - L) / 3; Point P1 = D + M1 * D_DC; Point P2 = D + M2 * D_DC; double f1 = f(AB, P1), f2 = f(AB, P2); if(f1 < f2) { R = M2; } else { L = M1; } } return f(AB, D + L * D_DC); } R solve() { R L = 0, R = 1; int T = 200; while(T --) { double M1 = L + (R - L) / 3; double M2 = R - (R - L) / 3; Point P1 = A + M1 * D_AB; Point P2 = A + M2 * D_AB; double F1 = F(P1), F2 = F(P2); if(F1 < F2) { R = M2; } else { L = M1; } } return F(A + L * D_AB); } int main() { scanf("%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y); scanf("%lf%lf%lf%lf", &C.x, &C.y, &D.x, &D.y); scanf("%lf%lf%lf", &p, &q, &r); D_AB = B - A; D_DC = C - D; printf("%.2lf\n", solve()); return 0; }