[坑]狄利克雷卷积和反演

开个坑,记录一些和反演以及狄利克雷卷积的东西。

首先积性函数、狄利克雷卷积等基本概念不写了,就讲讲性质吧。

有几个一定要记住的东西:

\[\mu \ast 1 = e\]

\[\varphi \ast 1 = id\]

\[\mu \ast id = \varphi\]

这几个在推式子的过程中都有很大的作用,务必要记住。

所谓莫比乌斯反演,其实就是:

\[F = f \ast 1\Leftrightarrow f = F \ast \mu\]

(谜之音:其实很多所谓“反演题”都没用到这俩性质啊……)

关于莫比乌斯函数本身,还有一个好康的性质:

\[(\mu\ast 1)(k) = \sum_{i = 0}^k (-1)^i C_k^i\]

继续阅读

[BZOJ 2186]沙拉公主的困惑

这个题啊……亦可赛艇!

答案是[tex]\varphi(m!)*n!/m![/tex]。原因很简单,把[tex][1,n!][/tex]分成长度为[tex]m![/tex]的若干段,除去第一段外每一段中与[tex]m![/tex]互质的数[tex]k[/tex]肯定满足[tex](k\bmod m!,m!)=1[/tex](否则,[tex]k[/tex]和[tex]m![/tex]就会有大于一的公因子了)。所以说每一段内与[tex]m![/tex]互质的数都有[tex]\varphi(m!)[/tex]个。

麻烦好像就在于求一个阶乘的欧拉函数。考虑一个新乘上的数能给答案带来的贡献——如果这个数是合数,它的所有因子在前面都有了,只能把他自己贡献出来;如果这个数是质数(假设为[tex]p[/tex]),出了贡献自己以外还会贡献一个[tex](1-1/p)[/tex],最后乘起来就是贡献了[tex]p-1[/tex]。筛一遍素数再递推一下就好辣~

并且……[tex]n-m[/tex]可能非常大,所以说除去[tex]m![/tex]那块要用逆元做。

(顺便说下阶乘也要递推)

代码:

/**************************************************************
    Problem: 2186
    User: danihao123
    Language: C++
    Result: Accepted
    Time:9408 ms
    Memory:166836 kb
****************************************************************/
 
#include <cstdio>
#include <cmath>
typedef unsigned long long ull;
const int maxn=10000000;
ull R;
bool vis[maxn+5];
inline void sievePrime(){
    register int i,j,m=sqrt(maxn+0.5);
    for(i=2;i<=m;i++)
        if(!vis[i])
            for(j=i*i;j<=maxn;j+=i)
                vis[j]=true;
}
ull fac[maxn+5];
inline void sieveFac(){
    register int i;
    fac[0]=1%R;
    for(i=1;i<=maxn;i++)
        fac[i]=(fac[i-1]*(i%R))%R;
}
ull phifac[maxn+5];
inline void sievePhiFac(){
    register int i;
    phifac[1]=1%R;
    for(i=2;i<=maxn;i++){
        if(vis[i])
            phifac[i]=(phifac[i-1]*(i%R))%R;
        else
            phifac[i]=(phifac[i-1]*((i%R-1%R+R)%R))%R;
    }
}
void exgcd(ull a,ull b,ull& d,ull& x,ull& y){
    if(!b){
        d=a;
        x=1;
        y=0;
    }else{
        exgcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}
ull inv(ull a){
    ull d,x,y;
    exgcd(a,R,d,x,y);
    return (x+R)%R;
}
int main(){
    int T;
    int n,m;
    scanf("%d%llu",&T,&R);
    sievePrime();
    sieveFac();
    sievePhiFac();
    while(T--){
        scanf("%d%d",&n,&m);
        printf("%llu\n",(phifac[m]*((fac[n]*inv(fac[m]))%R))%R);
    }
    return 0;
}

[BZOJ 2118]墨墨的等式

论如何把数论乱搞和图论乱搞出在一起……

这个题由于要求[tex]x\ge 0[/tex],所以不能gcd乱搞。我们可以先取[tex]\{a_n\}[/tex]的最小值[tex]p[/tex](忽略为0的情况,为啥取最小值待会再说),对方程两边模[tex]p[/tex]。然后对于任何能使某个同余方程成立的[tex]\{x_n\}[/tex],将其中所有[tex]x_i[/tex]同时加任意个[tex]p[/tex],同余方程都成立。

取模后,[tex]B\in Z_p[/tex],所以说只要对于[tex]Z_p[/tex]中的每个数找出最小的一组合法解即能推出其他解(所以说,剩余系越少效率越高,这也就要求取的[tex]a_i[/tex]要小)。不过这个最小的一组合法解怎么找?

我们先找出任意一个合法[tex]B[/tex](比如说0吧),然后尝试加上[tex]a_i[/tex],就可以推出其他[tex]B\in Z_p[/tex]的最小解。这个应用当然是需要最短路辣。

求出来的最短路,表示的是取最小解时的[tex]B[/tex]。这样的话就可以推出某个前缀区间中合法[tex]B[/tex]的个数(能加多少[tex]p[/tex],就有多少个,注意不要忽略加0个的情况),并且答案符合区间减法,最后做差分即可。

注意忽略[tex]a_i=0[/tex]的情况(相当于不存在)。

代码:

/**************************************************************
    Problem: 2118
    User: danihao123
    Language: C++
    Result: Accepted
    Time:1952 ms
    Memory:5508 kb
****************************************************************/
 
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#ifdef DEBUG
#include <cassert>
#endif
using namespace std;
typedef long long ll;
const int maxn=15;
const ll INF=0x7f7f7f7f7f7f7f7f;
ll A[maxn];
bool inQueue[500005];
ll d[500005];
int n;
ll minv;
inline void SPFA(){
    register int i,u,to;
    queue<int> Q;
    memset(d,0x7f,sizeof(d));
    d[0]=0;
    Q.push(0);
    inQueue[0]=true;
    #ifdef DEBUG
    assert(d[1]==INF);
    #endif
    while(!Q.empty()){
        u=Q.front();
        Q.pop();
        inQueue[u]=false;
        for(i=1;i<=n;i++){
            to=(u+A[i])%minv;
            if(d[u]<INF && d[u]+A[i]<d[to]){
                d[to]=d[u]+A[i];
                if(!inQueue[to]){
                    Q.push(to);
                    inQueue[to]=true;
                }
            }
        }
    }
}
 
inline ll Calc(ll x){
    register ll ans=0;
    register int i=0;
    for(i=0;i<minv;i++)
        if(d[i]<=x)
            ans+=(x-d[i])/minv+1;
    return ans;
}
 
int main(){
    ll l,r;
    register int i;
    scanf("%d%lld%lld",&n,&l,&r);
    minv=0x7fffffff;
    for(i=1;i<=n;i++){
        scanf("%d",&A[i]);
        if(!A[i]){
            i--;
            n--;
            continue;
        }
        minv=min(minv,A[i]);
    }
    SPFA();
    printf("%lld\n",Calc(r)-Calc(l-1));
    return 0;
}


[CF 711D]Directed Roads

这个题啊……其实不难。

首先你注意,他告诉你你可以把边弄反。

其次注意,这个图不一定就有一个环。

然后每个环的取反法有[tex]2^x[/tex]种(假设环中有[tex]x[/tex]条边),但是空集不行,全集也不行,因此每个环爆掉的方案有[tex]2^x-2[/tex]种。然后环之外的边随便弄,乘法原理乱搞即可。

然后你是不是感觉这个题似曾相识?是的似乎这个题就是NOIP D1T2的翻版。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=200001;
const ll MOD=1000000007;
int G[maxn];
int in[maxn];
bool vis[maxn];
int n;
inline bool jianz(){
    register int i;
    bool ans=false;
    for(i=1;i<=n;i++){
        if(!vis[i] && !in[i]){
            ans=true;
            in[G[i]]--;
            vis[i]=true;
            G[i]=0;
        }
    }
    return ans;
}
ll dfs(int x,int y){
    if(x==y && vis[x]){
        return 0;
    }else{
        vis[x]=true;
        return dfs(G[x],y)+1;
    }
}
ll pow_mod(ll a,ll b){
    if(!b){
        return 1;
    }else{
        ll ans=pow_mod(a,b/2);
        ans=ans*ans%MOD;
        if(1&b){
            ans=(ans*(a%MOD))%MOD;
        }
        return ans;
    }
}
inline ll solve(){
	register int i;
	register ll Huan,temp=0,ans=1;
	while(jianz());
	for(i=1;i<=n;i++)
		if(!vis[i]){
			Huan=dfs(i,i);
			temp+=Huan;
			ans=(ans*(pow_mod(2,Huan)+MOD-2))%MOD;
		}
	ans=(ans*pow_mod(2,n-temp))%MOD;
	return ans;
}
int main(){
	register int i;
	scanf("%d",&n);
	for(i=1;i<=n;i++){
		scanf("%d",&G[i]);
		in[G[i]]++;
	}
	printf("%I64d\n",solve());
	return 0;
}

[CF 707C]Pythagorean Triples

很好的数学题啊……

一看就应该想起来构造,对于[tex]n[/tex]为奇数的情况,我们可以假设[tex]n[/tex]为最小数。由此,可以构造出来[tex](n,(n^{2}-1)/2,(n^{2}-1)/2+1)[/tex]一组勾股数(具体证明自己证去)。

[tex]n[/tex]为偶数时呢?化成奇数做?不好,因为这样会出现对于[tex]n^{a} (a>1)[/tex]一类数会无能为力。偶数也可构造:[tex](n,(n/2)^{2}-1,(n/2)^{2}+1)[/tex]。

然后做就行了……

#include <iostream>
using namespace std;
int main(){
    long long n,temp;
    cin>>n;
    if(n<=2){
        cout<<-1<<endl;
        return 0;
    }
    if(1&n){
        temp=n*n-1;
        temp/=2;
        cout<<temp<<' '<<(temp+1)<<endl;
    }else{
        temp=n/2;
        cout<<temp*temp+1<<' '<<temp*temp-1<<endl;
    }
    return 0;
}

[BZOJ 1441]Min

这个问题看似无从下手。

我们可以先取[tex]n=2[/tex],然后你就发现你似乎要解[tex]A_{1}X_{1}+A_{2}X_{2}>0[/tex],而且还要求[tex]S[/tex]最小?你想到了什么?扩展欧几里得?对头!

由扩欧推广可得答案就是所有数的最大公约数。

代码:

/**************************************************************
    Problem: 1441
    User: danihao123
    Language: C++
    Result: Accepted
    Time:0 ms
    Memory:820 kb
****************************************************************/
 
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}
int main(){
    register int ans,i;
    int n,temp;
    scanf("%d",&n);
    scanf("%d",&temp);
    ans=abs(temp);
    for(i=2;i<=n;i++){
        scanf("%d",&temp);
        ans=gcd(ans,abs(temp));
    }
    printf("%d\n",ans);
    return 0;
}

[CF 371B]Fox Dividing Cheese

狐狸的三种操作的实质是除二,除三,除五。由此我们可以猜想在最优策略下,两块蛋糕最后的重量应该是[tex]gcd(a,b)[/tex]。然后试除即可。

(大胆猜想,不用证明

代码:

#include <iostream>
#include <algorithm>
using namespace std;
int gcd(int a,int b){
	if(!b)
		return a;
	else
		return gcd(b,a%b);
}
static int P[3]={2,3,5};
inline int min_fj(int source,int direction){
	register int i,ans=0;
	source/=direction;
	if(source==1)
		return 0;
	for(i=2;i>=0;i--){
		while(source%P[i]==0){
			source/=P[i];
			ans++;
		}
	}
	if(source==1)
		return ans;
	else
		return -1;
}
int main(){
	register int direction,t1,t2;
	int a,b;
	cin>>a>>b;
	if(a==b){
		cout<<0<<endl;
		return 0;
	}
	direction=gcd(a,b);
	t1=min_fj(a,direction);
	if(t1==-1){
		cout<<-1<<endl;
		return 0;
	}
	t2=min_fj(b,direction);
	if(t2==-1){
		cout<<-1<<endl;
		return 0;
	}
	cout<<t1+t2<<endl;
	return 0;
}

[CodeVS 1012]最大公约数和最小公倍数问题

很经典的问题了吧……然而现在才A……

应注意[tex]P*Q=x*y[/tex],然而[tex]P[/tex]和[tex]Q[/tex]都可表示为[tex]x[/tex]的乘积,问题就好思考多了。答案就是[tex]y/x[/tex]的质因子的子集数(同一种质因子不能同时分配到P与Q中,否则gcd(P,Q)会不等于x)。

注意有可能无解!

代码:

#include <iostream>
using namespace std;
inline int fj(int x){
	register int i,ans=0;
	for(i=2;i<=x && x>1;i++)
		if(!(x%i)){
			ans++;
			while(!(x%i))
				x/=i;
		}
	return ans;
}
int main(){
	int a,b;
	register int ans;
	cin>>a>>b;
	if(b%a)
		ans=0;
	else
		ans=a==1?1:1<<fj(b/a);
	cout<<ans<<endl;
	return 0;
}

[BZOJ 3713]Iloczyn

这题应该注意到,斐波纳契函数增长速度很快,[tex]10^9[/tex]以下的斐波纳契函数值很少,所以可以打表。这样,问题就迎刃而解了。

代码:

/**************************************************************
    Problem: 3713
    User: danihao123
    Language: C++
    Result: Accepted
    Time:20 ms
    Memory:828 kb
****************************************************************/
 
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
int fib[46]={0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296,433494437,701408733,1134903170};
bool check(int n){
    int m=sqrt(0.5+n);
    if(binary_search(fib,fib+46,n))
        return true;
    register int i;
    for(i=2;i<=m;i++){
        if(!(n%i) && binary_search(fib,fib+46,i)){
            if(binary_search(fib,fib+46,n/i))
                return true;
        }
    }
    return false;
}
int main(){
    int T,n;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        if(check(n))
            puts("TAK");
        else
            puts("NIE");
    }
    return 0;
}

[BZOJ 1607]轻拍牛头

噫……筛法

然而……人傻自带大常数

代码:

继续阅读