[CF 965E]Short Code
你有\(n\)个两两不同的串,你要将每个串变成其的一个前缀,使得变换后的所有串仍然两两不同,并且所有串长度和尽可能小,输出这个和。
\(n\leq 10^5\),所有串长之和不超过\(10^5\)。
[CodeChef BWGAME]Black-white Board Game
ao劲啊这题,,,
看到那个逆序对奇偶性就想到了行列式(考虑行列式的定义)……其实最后要判定的就是该矩阵行列式的正负性(或者是0)。
这个东西肯定可以高消搞成上三角,然后行列式就很好求了。但高消事\(O(n^3)\)的,会T掉。
考虑怎么去优化这个高消。首先在消元顺序合理的情况下,一定可以让矩阵在整个过程中一直是01矩阵。具体的实现方式,就是考虑从小到大对每个变量进行消元的时候,包含该变量的方程很多,并且他们两两之间一定是满足一个的全1段事另一个的前缀。那么用最短的那一段进行消元即可。
考虑到其他方程被消之后最靠左的1的位置会全部变成另一个位置,所以可以考虑使用可并堆维护各个方程。同时,为了求每个方程当前最靠左的1的位置,我搞了个并查集(逃
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <vector> #include <queue> #include <ext/pb_ds/priority_queue.hpp> using R = double; // using GG = __gnu_pbds::priority_queue<int>; const int maxn = 100005; const R eps = 1e-8; inline int sign(R x) { if(fabs(x) < eps) { return 0; } else { if(x < 0.00) { return -1; } else { return 1; } } } int seg[maxn][2]; namespace BF { R A[105][105]; inline int det(int n) { int flag = 1; for(int i = 1; i <= n; i ++) { int r = i; for(int j = i + 1; j <= n; j ++) { if(fabs(A[j][i]) > fabs(A[i][i])) { r = j; } } if(r != i) { flag *= -1; for(int j = i; j <= n; j ++) { std::swap(A[i][j], A[r][j]); } } else { if(sign(A[i][i]) == 0) { return 0; } } for(int j = i + 1; j <= n; j ++) { if(sign(A[j][i]) == 0) continue; double f = A[j][i] / A[i][i]; for(int k = i; k <= n; k ++) { A[j][k] -= A[i][k] * f; } } } int ret = flag; for(int i = 1; i <= n; i ++) { ret *= sign(A[i][i]); } return ret; } inline void solve(int n) { for(int i = 1; i <= n; i ++) { int L = seg[i][0], R = seg[i][1]; for(int j = 1; j <= n; j ++) { if(L <= j && j <= R) { A[i][j] = 1; } else { A[i][j] = 0; } } } int v = (det(n)); if(v == -1) { puts("Fedor"); } else if(v == 0) { puts("Draw"); } else { puts("Alex"); } } }; namespace CT { /* struct Node { int l, r, id; bool operator <(const Node &res) const { if(l == res.l) { if(r == res.r) { return id < res.id; } else { return r < res.r; } } else { return l < res.l; } } bool operator >(const Node &res) const { if(l == res.l) { if(r == res.r) { return id > res.id; } else { return r > res.r; } } else { return l > res.l; } } bool operator ==(const Node &res) const { return (l == res.l) && (r == res.r) && (id == res.id); } }; */ struct N2 { int r, id; N2() { r = 0; id = 0; } N2(int x, int y) { r = x; id = y; } bool operator <(const N2 &res) const { if(r == res.r) { return id < res.id; } else { return r < res.r; } } bool operator >(const N2 &res) const { if(r == res.r) { return id > res.id; } else { return r > res.r; } } bool operator ==(const N2 &res) const { return (r == res.r) && (id == res.id); } }; /* struct Node { Node *fa, *ch[2]; N2 v; int l; int setv; int d() { return ((this == fa -> ch[1]) ? 1 : 0); } void sc(Node *c, int dir) { ch[dir] = c; c -> fa = this; } int cmp(const N2 &v2) const { if(v == v2) { return -1; } else { if(v2 < v) { return 0; } else { return 1; } } } void paint(int x) { if(l == -1) return; l = x; setv = x; } void pushdown(int x) { if(setv != -1) { ch[0] -> paint(setv); ch[1] -> paint(setv); setv = -1; } } }; Node pool[maxn]; std::queue<int> FQ; Node *nil, *cur; void init_pool() { nil = cur = pool; nil -> l = nil -> setv = -1; nil -> fa = nil -> ch[0] = nil -> ch[1] = nil; } Node *alloc_node(N2 x, int L) { Node *ret; if(FQ.empty()) { ret = ++ cur; } else { ret = FQ.front(); FQ.pop(); } ret -> v = x; ret -> l = L; ret -> setv = -1; ret -> fa = ret -> ch[0] = ret -> ch[1] = nil; return ret; } inline bool is_root(Node *o) { return (o -> fa == nil) } inline void zig(Node *x) { int d = x -> d(); Node *y = x -> fa; if(is_root(y)) { x -> fa = y -> fa; } else { y -> fa -> sc(x, y -> d()); } y -> sc(x -> ch[d ^ 1], d); x -> sc(y, d ^ 1); } void pdw_path(Node *x) { if(!is_root(x)) pdw_path(x -> fa); x -> pushdown(); } inline void splay(Node *x) { pdw_path(x); while(!is_root(x)) { Node *y = x -> fa; if(!is_root(y)) { if((x -> d()) ^ (y -> d())) { zig(x); } else { zig(y); } } zig(x); } } Node *insert(Node *o, Node *x) { if(o == nil) return x; Node *last = o; int d; while(o != nil) { o -> pushdown(); last = o; d = o -> cmp(x -> v); o = o -> ch[d]; } x -> ch[0] = x -> ch[1] = nil; last -> sc(x, d); splay(x); return x; } Node *top(Node *x) { Node *ret = x; while(x -> ch[0] == 0) { x -> paint } } */ int par[maxn * 2]; int get_fa(int x) { if(par[x] == x) return x; else return (par[x] = get_fa(par[x])); } void merge(int dir, int src) { dir = get_fa(dir); src = get_fa(src); if(dir == src) return; par[src] = dir; } bool is_same(int x, int y) { return (get_fa(x) == get_fa(y)); } using heap = __gnu_pbds::priority_queue<N2, std::greater<N2> >; heap Q[maxn]; int id[maxn], mp[maxn]; int det(int n) { int flag = 1; for(int i = 1; i <= n; i ++) { Q[i].clear(); } for(int i = 1; i <= 2 * n; i ++) { par[i] = i; } for(int i = 1; i <= n; i ++) { id[i] = mp[i] = i; int L = seg[i][0], R = seg[i][1]; Q[L].push(N2(R, i)); merge(L, n + i); } for(int i = 1; i <= n; i ++) { if(Q[i].empty()) { return 0; } int p = id[i]; if(!(get_fa(p + n) <= i && seg[p][1] == (Q[i].top()).r)) { flag *= -1; int np = (Q[i].top()).id; #ifdef LOCAL printf("Swaping %d and %d.\n", p, np); #endif int nv = mp[np]; std::swap(id[i], id[nv]); std::swap(mp[np], mp[p]); } p = id[i]; Q[i].pop(); int r = seg[p][1]; if(Q[i].size() > 0 && (Q[i].top()).r == r) { return 0; } if(r < n) { Q[r + 1].join(Q[i]); merge(r + 1, i); } } return flag; } void solve(int n) { int v = det(n); if(v == -1) { puts("Fedor"); } else if(v == 0) { puts("Draw"); } else { puts("Alex"); } } }; int main() { int T; scanf("%d", &T); while(T --) { int n; scanf("%d", &n); for(int i = 1; i <= n; i ++) { scanf("%d%d", &seg[i][0], &seg[i][1]); } if(n <= 100) { BF::solve(n); } else { CT::solve(n); } } return 0; }
[BZOJ 2763]飞行路线
分层图最短路处女作TAT
很明显要求你求一个分层图上的最短路。不过没必要把分层图构出来,手写转移即可。还有卡SPFA是怎么回事?出题人你粗来我保证不打死你……
然而沉迷pb_ds,不能自拔。
代码:
/************************************************************** Problem: 2763 User: danihao123 Language: C++ Result: Accepted Time:268 ms Memory:3136 kb ****************************************************************/ #include <cstdio> #include <queue> #include <algorithm> #include <utility> #include <cstring> #include <cctype> #include <ext/pb_ds/priority_queue.hpp> using namespace std; const int maxn=10001,maxm=100001,maxk=11; typedef pair<int,int> pii; int first[maxn]; int next[maxm],to[maxm],dist[maxm]; int graph_cnt=0; inline void Add_Edge(int u,int v,int d){ graph_cnt++; next[graph_cnt]=first[u]; first[u]=graph_cnt; to[graph_cnt]=v; dist[graph_cnt]=d; } struct Node{ pii pnt; int d; bool operator <(const Node& x) const{ return d<x.d; } bool operator >(const Node& x) const{ return d>x.d; } }; typedef __gnu_pbds::priority_queue<Node,greater<Node> > Heap; Heap::point_iterator ite[maxn][maxk]; Heap Q; int n,k; bool vis[maxn][maxk]; int d[maxn][maxk]; inline void relax(int u,int v,int di){ d[u][v]=di; if(ite[u][v]!=0) Q.modify(ite[u][v],(Node){make_pair(u,v),di}); else ite[u][v]=Q.push((Node){make_pair(u,v),di}); } int Dijkstra(int s,int t){ register int i,u,v; pii temp; memset(d,0x7f,sizeof(d)); d[s][0]=0; ite[s][0]=Q.push((Node){make_pair(s,0),0}); while(!Q.empty()){ temp=Q.top().pnt; Q.pop(); u=temp.first; v=temp.second; if(vis[u][v]) continue; vis[u][v]=true; for(i=first[u];i;i=next[i]){ if(v<k){ if(d[u][v]<d[to[i]][v+1]){ relax(to[i],v+1,d[u][v]); } } if(d[u][v]+dist[i]<d[to[i]][v]){ relax(to[i],v,d[u][v]+dist[i]); } } } register int ans=0x7f7f7f7f; for(i=0;i<=k;i++) ans=min(ans,d[t][i]); return ans; } int main(){ int m,s,t,u,v,d; register int i; scanf("%d%d%d%d%d",&n,&m,&k,&s,&t); for(i=1;i<=m;i++){ scanf("%d%d%d",&u,&v,&d); Add_Edge(u,v,d); Add_Edge(v,u,d); } printf("%d\n",Dijkstra(s,t)); return 0; }
[BZOJ 4152]The Captain
这题初看有些棘手。但是毕竟是最短路,[tex]min(abs(x_{1}-x_{2}),abs(y_{1}-y_{2}))[/tex]这样的边,大可以分成两条边来建,于是乎min就形同虚设了。并且我们可以看到这样建图有一个好处:跨越若干点的方案可以一定可以分成图上的若干边。问题大为简化,迎刃而解。
但这提有个丧病的地方:卡SPFA。加了一些优化照样挂。所以我一气之下写了可并堆优化的Dijkstra :)当然可并堆用的是pb_ds辣。
代码:
/************************************************************** Problem: 4152 User: danihao123 Language: C++ Result: Accepted Time:4888 ms Memory:17412 kb ****************************************************************/ #include <cstdio> #include <algorithm> #include <cstring> #include <utility> #include <ext/pb_ds/priority_queue.hpp> #include <cctype> #include <bitset> #ifdef DEBUG #include <cassert> #endif using namespace std; const int maxn=200001; int n; inline int abs(int x){ return x<0?-x:x; } int first[maxn]; int next[maxn*4],to[maxn*4],dist[maxn*4]; int graph_cnt=0; inline void Add_Edge(int x,int y,int d){ graph_cnt++; next[graph_cnt]=first[x]; first[x]=graph_cnt; to[graph_cnt]=y; dist[graph_cnt]=d; } int d[maxn]; bitset<maxn> vis; typedef pair<int,int> my_pair; typedef __gnu_pbds::priority_queue<my_pair,greater<my_pair> > Heap; Heap::point_iterator ite[maxn]; Heap Q; int dij(){ register int i,u; memset(d,0x7f,sizeof(d)); d[1]=0; ite[1]=Q.push(make_pair(0,1)); while(!Q.empty()){ u=Q.top().second; Q.pop(); if(vis[u]) continue; vis[u]=true; for(i=first[u];i;i=next[i]){ if(d[to[i]]>(dist[i]+d[u])){ d[to[i]]=dist[i]+d[u]; if(ite[to[i]]!=0) Q.modify(ite[to[i]],make_pair(d[to[i]],to[i])); else ite[to[i]]=Q.push(make_pair(d[to[i]],to[i])); } } } return d[n]; } int pr[maxn][2]; int order1[maxn],order2[maxn]; int cmp1(const int i,const int j){ return pr[i][0]<pr[j][0]; } int cmp2(const int i,const int j){ return pr[i][1]<pr[j][1]; } // I/O优化 inline int readint(){ char c=getchar(); register int x=0; while(!isdigit(c)) c=getchar(); while(isdigit(c)){ x=x*10+c-'0'; c=getchar(); } return x; } int main(){ register int i; n=readint(); for(i=1;i<=n;i++){ pr[i][0]=readint(); pr[i][1]=readint(); order1[i]=i; order2[i]=i; } sort(order1+1,order1+1+n,cmp1); sort(order2+1,order2+1+n,cmp2); for(i=1;i<=n;i++){ if(i!=1){ Add_Edge(order1[i],order1[i-1],pr[order1[i]][0]-pr[order1[i-1]][0]); Add_Edge(order2[i],order2[i-1],pr[order2[i]][1]-pr[order2[i-1]][1]); } if(i!=n){ Add_Edge(order1[i],order1[i+1],pr[order1[i+1]][0]-pr[order1[i]][0]); Add_Edge(order2[i],order2[i+1],pr[order2[i+1]][1]-pr[order2[i]][1]); } } printf("%d\n",dij()); return 0; }