[LibreOJ 2249][NOI2014]购票

danihao123 posted @ 2018年3月17日 17:08 in 题解 with tags NOI 凸包 线段树 树链剖分 二进制分组 斜率优化dp loj , 110 阅读
转载请注明出处:http://danihao123.is-programmer.com/

在紧张刺激的等待之后终于肝掉了这道题……

本题的DP方程长成这样(其中\(a\)指\(v\)的某个满足距离限制的祖先,\(d_v\)指\(v\)到根的路径长):

\[f_v = min(f_a + p_v(d_v - d_a) + q_v)\]

化简之后发现:

\[f_v = q_v + p_v d_v + min(f_a - p_v d_a)\]

利用\(min\)中那一块很容易发现是截距式……但是问题在于,我们的转移来源是树上的连续一段祖先,怎样维护他们的凸包?

答案很狂暴啊……用树链剖分套上向量集那题的线段树套凸包,然后完了……

(注意一点细节:本题因为数据范围过大,故可能存在两个向量叉乘爆long long,所以在求凸包时如果直接用叉积判断是否需要删点会炸掉,建议用斜率判断)

代码:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <utility>
#include <vector>
#include <queue>
#include <deque>
#include <cmath>
#include <set>
#include <climits>
using ll = long long;
using T = ll;
using R = long double;
const R eps = 1e-8;
int sign(R x) {
  if(fabsl(x) < eps) {
    return 0;
  } else {
    if(x > (R(0.00))) {
      return 1;
    } else {
      return -1;
    }
  }
}

struct Point {
  T x, y;
  Point(T qx = 0LL, T qy = 0LL) {
    x = qx; y = qy;
  }
};
using Vector = Point;
Vector operator +(const Vector &a, const Vector &b) {
  return Vector(a.x + b.x, a.y + b.y);
}
Vector operator -(const Point &a, const Point &b) {
  return Vector(a.x - b.x, a.y - b.y);
}
Vector operator *(const Vector &a, T lam) {
  return Vector(a.x * lam, a.y * lam);
}
Vector operator *(T lam, const Vector &a) {
  return Vector(a.x * lam, a.y * lam);
}
inline T dot(const Vector &a, const Vector &b) {
  return (a.x * b.x + a.y * b.y);
}
inline T times(const Vector &a, const Vector &b) {
  return (a.x * b.y - a.y * b.x);
}
inline bool cmp(const Point &a, const Point &b) {
  if(a.x == b.x) {
    return a.y < b.y;
  } else {
    return a.x < b.x;
  }
}
inline R slope(const Vector &a) {
  R dx = a.x, dy = a.y;
  return (dy / dx);
}

inline void andrew(Point *P, int L, std::vector<Point> &bot, std::vector<Point> &top) {
  std::sort(P + 1, P + 1 + L, cmp);
  for(int i = 1; i <= L; i ++) {
    if(i != 1 && (P[i].x == P[i - 1].x)) continue;
    while(bot.size() > 1 && sign(slope(P[i] - bot.back()) - slope(bot.back() - bot[bot.size() - 2])) <= 0) {
      bot.pop_back();
    }
    bot.push_back(P[i]);
  }
  for(int i = L; i >= 1; i --) {
    if(i != L && (P[i].x == P[i + 1].x)) continue;
    while(top.size() > 1 && sign(slope(P[i] - top.back()) - slope(top.back() - top[top.size() - 2])) <= 0) {
      top.pop_back();
    }
    top.push_back(P[i]);
  }
  std::reverse(top.begin(), top.end());
}

const int maxn = 200005;
const int maxno = maxn << 2;
const int N = 200000;
bool zen[maxno];
std::vector<Point> bot[maxno], top[maxno];
Point P[maxn];
inline void maintain(int o, int L, int R) {
  static Point tmp[maxn];
  const int lc = o << 1, rc = o << 1 | 1;
  const bool used = zen[o];
  zen[o] = (zen[lc] && zen[rc]);
  if(zen[o] != used) {
    std::copy(P + L, P + R + 1, tmp + 1);
    int len = R - L + 1;
    andrew(tmp, len, bot[o], top[o]);
  }
}
void modify(int o, int L, int R, const int &p, const Point &v) {
  if(L == R) {
    zen[o] = true;
    P[L] = v;
    bot[o].push_back(v); top[o].push_back(v);
  } else {
    const int M = (L + R) / 2;
    if(p <= M) {
      modify(o << 1, L, M, p, v);
    } else {
      modify(o << 1 | 1, M + 1, R, p, v);
    }
    maintain(o, L, R);
  }
}
inline T calc_ans(T k, const Point &v) {
  return v.y - k * v.x;
}
inline T search(const std::vector<Point> &vec, const T &k) {
  int l = 0, r = vec.size() - 1;
  while(r - l > 2) {
    int lm = (l * 2 + r) / 3, rm = (2 * r + l) / 3;
    if((calc_ans(k, vec[lm]) > calc_ans(k, vec[rm]))) {
      l = lm;
    } else {
      r = rm;
    }
  }
  T ans = LLONG_MAX;
  for(int i = l; i <= r; i ++) {
    ans = std::min(ans, calc_ans(k, vec[i]));
  }
  return ans;
}
T query(int o, int L, int R, const int &ql, const int &qr, const T &k) {
  if(ql <= L && R <= qr) {
    return search(bot[o], k);
  } else {
    int M = (L + R) / 2;
    T ans = LLONG_MAX;
    if(ql <= M) {
      ans = std::min(ans, query(o << 1, L, M, ql, qr, k));
    }
    if(qr > M) {
      ans = std::min(ans, query(o << 1 | 1, M + 1, R, ql, qr, k));
    }
    return ans;
  }
}

int first[maxn];
int next[maxn << 1], to[maxn << 1];
ll dist[maxn << 1];
void add_edge(int u, int v, ll d) {
  static int cnt = 0;
  cnt ++;
  next[cnt] = first[u];
  first[u] = cnt;
  to[cnt] = v;
  dist[cnt] = d;
}

int fa[maxn], dep[maxn], hson[maxn];
ll d[maxn];
int siz[maxn];
int bs[maxn][18];
void dfs_1(int x, int f = -1, int depth = 1) {
  fa[x] = bs[x][0] = f; dep[x] = depth;
  siz[x] = 1;
  int max_siz = 0;
  for(int i = first[x]; i; i = next[i]) {
    int v = to[i];
    if(v != f) {
      d[v] = d[x] + dist[i];
      dfs_1(v, x, depth + 1);
      siz[x] += siz[v];
      if(siz[v] > max_siz) {
        hson[x] = v; max_siz = siz[v];
      }
    }
  }
}
int dfn[maxn], tid[maxn], up[maxn];
void dfs_2(int x, int a = 1, int f = 0) {
  static int cnt = 0;
  dfn[x] = ++ cnt; tid[cnt] = x;
  up[x] = a;
  if(hson[x]) {
    dfs_2(hson[x], a, x);
  } else {
    return;
  }
  for(int i = first[x]; i; i = next[i]) {
    int v = to[i];
    if(v != f && v != hson[x]) {
      dfs_2(v, v, x);
    }
  }
}
int k_anc(int x, ll k) {
  int yx = x;
  for(int j = 17; j >= 0; j --) {
    int a = bs[x][j];
    if(a != -1 && d[yx] - d[a] <= k) {
      x = a;
    }
  }
#ifdef LOCAL
  printf("%d's %lld-th anc : %d\n", yx, k, x);
#endif
  return x;
}
int n;
ll get_up(int x, int anc, ll k) {
  ll ans = LLONG_MAX;
  while(up[x] != up[anc]) {
    ans = std::min(ans, query(1, 1, n, dfn[up[x]], dfn[x], k));
    x = fa[up[x]];
  }
  return std::min(ans, query(1, 1, n, dfn[anc], dfn[x], k));
}

ll p[maxn], q[maxn], l[maxn];
ll f[maxn];
void dp(int x) {
#ifdef LOCAL
  printf("processing %d...\n", x);
  printf("d : %lld\n", d[x]);
#endif
  if(x != 1) {
#ifdef LOCAL
    printf("b : %lld\n", get_up(fa[x], k_anc(x, l[x]), p[x]));
#endif
    f[x] = get_up(fa[x], k_anc(x, l[x]), p[x]) + d[x] * p[x] + q[x];
  } else {
    f[x] = 0;
  }
#ifdef LOCAL
  printf("ans : %lld\n", f[x]);
#endif
  modify(1, 1, n, dfn[x], Point(d[x], f[x]));
  for(int i = first[x]; i; i = next[i]) {
    int v = to[i];
    dp(v);
  }
}

int main() {
  int t; scanf("%d%d", &n, &t);
  for(int i = 2; i <= n; i ++) {
    int father; T s;
    scanf("%d%lld%lld%lld%lld", &father, &s, &p[i], &q[i], &l[i]);
    add_edge(father, i, s);
  }
  memset(bs, -1, sizeof(bs));
  dfs_1(1); dfs_2(1);
  for(int j = 1; (1 << j) < n; j ++) {
    for(int i = 1; i <= n; i ++) {
      int a = bs[i][j - 1];
      if(a != -1) {
        bs[i][j] = bs[a][j - 1];
      }
    }
  }
  dp(1);
  for(int i = 2; i <= n; i ++) {
    printf("%lld\n", f[i]);
  }
  return 0;
}

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter