[BZOJ 3992][SDOI2015]序列统计
转载请注明出处:http://danihao123.is-programmer.com/
终于调过去了……(然而不就是道NTT+生成函数水题吗至于调半天)
首先积非常的恶心,考虑转成和。这个事需要求指标的……求指标的话枚举原根的若干次幂即可(恰好$m$是素数一定有原根……),判断原根用比较大力的手段即可(我搞了一个$O(n\sqrt{n}logn)$的……求轻喷)。
然后这题还算比较简单吧……用生成函数表示原来的集合,然后$n$次幂就可以了。
注意那事个循环卷积……所以要开两倍然后每次乘完了再把右半部分搞过去。
代码:
/************************************************************** Problem: 3992 User: danihao123 Language: C++ Result: Accepted Time:6652 ms Memory:1864 kb ****************************************************************/ #include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <queue> #include <utility> #include <vector> #include <cmath> typedef long long ll; const int maxn = 32005; const ll ha = 1004535809LL; const ll bs = 3LL; ll n, m, gl; int sz; ll pow_mod(ll a, ll b, ll p) { if(!b) return 1LL; ll ans = pow_mod(a, b >> 1, p); ans = (ans * ans) % p; if(b & 1LL) ans = (ans * a) % p; return ans; } ll inv(ll x, ll p) { return pow_mod(x, p - 2LL, p); } void break_up(ll x, std::vector<ll> &V) { int bd = sqrt(x + 0.5); for(ll i = 2; i <= bd; i ++) { if(x % i == 0) { V.push_back(i); while(x % i == 0) x /= i; } if(x == 1LL) break; } if(x > 1LL) V.push_back(x); } ll get_phi() { if(m == 2LL) return 1LL; ll mi = m - 1LL; std::vector<ll> V; break_up(mi, V); for(ll i = 2; i <= mi; i ++) { bool ok = true; for(int j = 0; j < V.size(); j ++) { ll b = mi / V[j]; if(pow_mod(i, b, m) == 1LL) { ok = false; #ifdef LOCAL printf("%lld not passed!\n", i); #endif break; } } if(ok) { return i; } } } int bi, len; int flip(int x) { int ans = 0; for(int i = 0; i < bi; i ++) { if((1 << i) & x) { ans += (1 << (bi - i - 1)); } } return ans; } void ntt(ll *A, bool flag = false) { for(int i = 0; i < len; i ++) { int v = flip(i); if(v < i) std::swap(A[i], A[v]); } for(int L = 1; L < len; L <<= 1) { ll xi_n = pow_mod(3LL, (ha - 1LL) / (ll(L << 1)), ha); if(flag) xi_n = inv(xi_n, ha); for(int i = 0; i < len; i += (L << 1)) { ll w = 1; for(int j = i; j < i + L; j ++) { ll p1 = A[j], p2 = A[j + L]; A[j] = (p1 + (p2 * w) % ha) % ha; A[j + L] = (p1 - (p2 * w) % ha + ha) % ha; w = (w * xi_n) % ha; } } } } void poly_mul(ll *A, ll *B) { static ll C[maxn]; memset(C, 0, sizeof(C)); #ifdef LOCAL printf("A :"); for(int i = 0; i < len; i ++) printf(" %lld", A[i]); puts(""); printf("B :"); for(int i = 0; i < len; i ++) printf(" %lld", B[i]); puts(""); #endif ntt(A); ntt(B); for(int i = 0; i < len; i ++) C[i] = (A[i] * B[i]) % ha; ntt(C, true); ll inv_n = inv(len, ha); for(int i = 0; i < len; i ++) { C[i] = (C[i] * inv_n) % ha; } #ifdef LOCAL printf("C (not processed) :"); for(int i = 0; i < len; i ++) printf(" %lld", C[i]); puts(""); #endif for(int i = 0; i < len; i ++) { int v = i % (m - 1LL); if(v != i) { C[v] = (C[v] + C[i]) % ha; C[i] = 0LL; } } #ifdef LOCAL printf("C :"); for(int i = 0; i < len; i ++) printf(" %lld", C[i]); puts(""); #endif std::copy(C, C + len, A); } void poly_pow(ll *A, ll b) { static ll B[maxn]; static ll res[maxn]; std::copy(A, A + len, res); std::fill(A, A + len, 0); A[0] = 1LL; #ifdef LOCAL printf("A :"); for(int i = 0; i < len; i ++) printf(" %lld", A[i]); puts(""); printf("res : "); for(int i = 0; i < len; i ++) printf("%lld ", res[i]); puts(""); #endif while(b) { if(1LL & b) { std::copy(res, res + len, B); poly_mul(A, B); std::fill(B, B + len, 0); } std::copy(res, res + len, B); poly_mul(res, B); std::fill(B, B + len, 0); b >>= 1LL; } } int main() { static bool vis[maxn]; static ll A[maxn]; scanf("%lld%lld%lld%d", &n, &m, &gl, &sz); ll phi = get_phi(); for(int i = 1; i <= sz; i ++) { int v; scanf("%d", &v); if(v == 0) continue; vis[v] = true; } int logx = 0; bi = 0; len = 1; while(len <= (2 * m - 2)) { bi ++; len <<= 1; } for(int i = 0; i < (m - 1); i ++) { int v = pow_mod(phi, i, m); if(vis[v]) { A[i] ++; #ifdef LOCAL printf("log(%d) : %d\n", v, i); #endif } if(v == gl) { logx = i; } } poly_pow(A, n); printf("%lld\n", A[logx]); return 0; }