[BZOJ 3640]JC的小苹果

danihao123 posted @ 2018年6月27日 20:12 in 题解 with tags 高斯消元 概率与期望 bzoj 矩阵乘法 友矩阵 逆矩阵 , 505 阅读
转载请注明出处:http://danihao123.is-programmer.com/

逆矩阵文明,,,

很显然我们可以定义一个状态\(f[i][j]\)表示当前血量为\(i\)走到\(j\)的概率,然后肥肠爆歉这个东西没法DP(可能会有的点的伤害为0,这样可以凿出来环)。考虑高消,这个东西有个好处是不可能从血量低的到血量高的状态,所以可以从大到小枚举血量,这样各层事独立的,复杂度比直接高消降低了很少。可惜复杂度为\(O(sn^3)\)(设血量为\(s\)),会T掉。

考虑转移的过程,转移时等价于解这样一个方程:

\[
\begin{aligned}
a_{11}x_{1} + a_{12}x_{2} + \ldots + a_{1n}x_{n} &= c_1\\
a_{21}x_{1} + a_{22}x_{2} + \ldots + a_{2n}x_{n} &= c_2\\
&\ldots\\
a_{n1}x_{1} + a_{n2}x_{2} + \ldots + a_{nn}x_{n} &= c_n
\end{aligned}
\]

其中的未知数\(x\)事我们要求的东西,\(c\)表示从高血量状态转移过来的概率(这个可以视作常数)。根据友矩阵那一套理论,这一系列方程等价于以下等式:

\[
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
x_{1}\\ x_{2} \\ \vdots \\ x_{n}
\end{bmatrix}
=
\begin{bmatrix}
c_1\\ c_2\\ \vdots\\ c_n
\end{bmatrix}
\]

不妨将之简记为\(AB = C\),其中我们只有\(B\)不知道,要求的也是\(B\)。我们除一下就可以得到\(B = A^{-1}C\),然后我们还发现每一层的\(A\)都是一样的,所以每一层的\(A^{-1}\)也都是一样的,预处理即可。这样转移部分的复杂度就变成了\(O(sn^2)\)(矩阵乘法在这里事方阵乘列向量)。

至于逆矩阵的求法,我们知道对矩阵做初等变化也就等价于乘上另一个矩阵。因此,我们将一个矩阵\(A\)用类似于高消的手段消为单位阵\(I\),所做的初等变换也就等价于乘上\(A^{-1}\)。我们对一个单位阵\(I\)作用上一样的操作,也就等于给这个单位阵乘上了\(A^{-1}\),这样我们就得到了\(A^{-1}\)。

代码:

/**************************************************************
    Problem: 3640
    User: danihao123
    Language: C++
    Result: Accepted
    Time:8708 ms
    Memory:13416 kb
****************************************************************/
 
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <cmath>
#include <algorithm>
#include <functional>
#include <utility>
#include <vector>
#include <queue>
#include <set>
#include <map>
int n, m, hp;
const int maxn = 151, maxm = 5005;
const int maxh = 10005;
typedef double R;
typedef R Mat[maxn][maxn];
Mat D, F;
void calc_inv() {
  for(int i = 1; i <= n; i ++) {
    F[i][i] = 1;
  }
  for(int i = 1; i <= n; i ++) {
    int r = i;
    for(int j = i + 1; j <= n; j ++) {
      if(fabs(D[j][i]) > fabs(D[r][i])) {
        r = j;
      }
    }
    // assert(r > -1);
    if(r != i) {
      for(int j = 1; j <= n; j ++) {
        std::swap(D[r][j], D[i][j]);
        std::swap(F[r][j], F[i][j]);
      }
    }
    R bs = D[i][i];
    for(int j = 1; j <= n; j ++) {
      D[i][j] /= bs; F[i][j] /= bs;
    }
    for(int k = 1; k <= n; k ++) {
      if(k != i) {
        R rate = D[k][i];
        for(int j = 1; j <= n; j ++) {
          D[k][j] -= rate * D[i][j];
          F[k][j] -= rate * F[i][j];
        }
      }
    }
  }
}
void matrix_mul(const Mat &A, const Mat &B, int a, int b, int c, Mat &res) {
  static Mat C;
  for(int i = 1; i <= a; i ++) {
    for(int j = 1; j <= c; j ++) {
      C[i][j] = 0;
    }
  }
  for(int i = 1; i <= a; i ++) {
    for(int j = 1; j <= c; j ++) {
      for(int k = 1; k <= b; k ++) {
        C[i][j] += A[i][k] * B[k][j];
      }
    }
  }
  for(int i = 1; i <= a; i ++) {
    for(int j = 1; j <= c; j ++) {
      res[i][j] = C[i][j];
    }
  }
}
 
int first[maxn], deg[maxn];
int next[maxm << 1], to[maxm << 1];
int gcnt = 0;
void add_edge(int u, int v) {
  gcnt ++;
  next[gcnt] = first[u]; first[u] = gcnt;
  to[gcnt] = v;
}
void ins_edge(int u, int v) {
  deg[u] ++;
  add_edge(u, v);
  if(u != v) {
    deg[v] ++;
    add_edge(v, u);
  }
}
 
int atk[maxn];
R f[maxh][maxn];
R solve() {
  for(int i = 1; i <= n; i ++) {
    D[i][i] = 1.00;
  }
  for(int i = 1; i < n; i ++) {
    for(int j = first[i]; j; j = next[j]) {
      int v = to[j];
      if(!atk[v]) {
        D[v][i] -= 1.00 / (R(deg[i]));
      }
    }
  }
  calc_inv();
  R ans = 0; static Mat C;
  f[hp][1] = 1.00;
  for(int i = hp; i >= 1; i --) {
    for(int j = 1; j <= n; j ++) {
      C[j][1] = f[i][j];
    }
    matrix_mul(F, C, n, n, 1, C);
    for(int j = 1; j < n; j ++) {
      for(int e = first[j]; e; e = next[e]) {
        int v = to[e];
        if(atk[v] > 0 && i - atk[v] > 0) {
          f[i - atk[v]][v] += C[j][1] / (R(deg[j]));
        }
      }
    }
    ans += C[n][1];
  }
  return ans;
}
 
int main() {
  scanf("%d%d%d", &n, &m, &hp);
  for(int i = 1; i <= n; i ++) {
    scanf("%d", &atk[i]);
  }
  for(int i = 1; i <= m; i ++) {
    int u, v; scanf("%d%d", &u, &v);
    ins_edge(u, v);
  }
  printf("%.8lf\n", solve());
  return 0;
}

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter