[CF 900F]Unusual Sequence
转载请注明出处:http://danihao123.is-programmer.com/
求有多少正整数序列,满足所有数的最大公约数为\(x\),所有数的和为\(y\)。
\(1\leq x, y\leq 10^9\)。
首先,如果\(x\)不是\(y\)的约数的话显然无解。
那么设\(r=\frac{y}{x}\),那么将\(\sum a_i = y\)两边除\(x\)的话右边就变成了\(r\)。问题就变成了要求和为\(r\),最大公约数为\(1\)。
然后求gcd恰为\(1\)很不好弄,我们试图将问题转化为gcd为\(c\)的倍数来做。那么对于给定的\(c\)(显然有\(\sigma_0(r)\)种),设\(m = \frac{r}{c}\),那么用隔板法可知合法序列有\(\sum_{i = 1}^{m}\binom{m - 1}{i - 1} = 2^{m - 1}\)。然后我们把至少转为恰好,这就是容斥原理的用武之地了,容斥系数显然要是莫比乌斯函数。
#include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <algorithm> #include <functional> #include <utility> using ll = long long; const ll ha = 1000000007LL; ll pow_mod(ll a, ll b) { ll ans = 1, res = a; while(b) { if(1LL & b) ans = ans * res % ha; res = res * res % ha; b >>= 1; } return ans; } const int N = 10000000; bool vis[N + 5]; int prm[N + 5]; int mu[N + 5]; void process() { vis[1] = true; mu[1] = 1; int pcnt = 0; for(int i = 2; i <= N; i ++) { if(!vis[i]) { prm[pcnt ++] = i; mu[i] = ha - 1LL; } for(int j = 0; j < pcnt; j ++) { int v = i * prm[j]; if(v > N) break; vis[v] = true; if(i % prm[j] == 0) { mu[v] = 0; break; } else { mu[v] = ha - mu[i]; } } } } ll calc_mu(int n) { if(n <= N) return mu[n]; // int m = floor(sqrt(n) + 0.5); int ret = 1; for(int i = 2; i * i <= n; i ++) { if(n % i == 0) { int th = 0; while(n % i == 0) { th ++; n /= i; } if(th == 1) { ret = ha - ret; } else { return 0; } } } if(n > 1) ret = ha - ret; return ret; } ll calc_delta(int x, int n) { ll th = pow_mod(2, (n / x) - 1) * calc_mu(x) % ha; return th; } ll solve(int n) { // int m = floor(sqrt(n) + 0.5); ll ret = 0; for(int i = 1; i * i <= n; i ++) { if(n % i == 0) { ret = (ret + calc_delta(i, n)) % ha; if(i * i != n) ret = (ret + calc_delta(n / i, n)) % ha; } } return ret; } int main() { process(); int x, y; scanf("%d%d", &x, &y); if(y % x != 0) { puts("0"); } else { printf("%I64d\n", solve(y / x)); } return 0; }
Sep 14, 2022 04:36:28 PM
Candidates can download 10th class biology subject sample papers pdf and key topics with assignments in all exam formats of the board like SA-1, SA-2, FA-1, FA-2, FA-3 and FA-4.Telugu Medium, <a href="https://jnanabhumiap.in/ap-ssc-biology-model-paper/">AP 10th Biology Model Paper</a>English Medium and Urdu Medium Students of the State who studying Class 10th Grade can download the AP SSC Biology Model Papers 2023 for theory, objective and bit questions to Self Practice.Telugu Medium, English Medium and Urdu Medium Students of the State who studying Class 10th Grade can download the AP SSC Biology Model Papers 2023 for theory, objective and bit questions to Self Practice.