[CodeChef BWGAME]Black-white Board Game
ao劲啊这题,,,
看到那个逆序对奇偶性就想到了行列式(考虑行列式的定义)……其实最后要判定的就是该矩阵行列式的正负性(或者是0)。
这个东西肯定可以高消搞成上三角,然后行列式就很好求了。但高消事\(O(n^3)\)的,会T掉。
考虑怎么去优化这个高消。首先在消元顺序合理的情况下,一定可以让矩阵在整个过程中一直是01矩阵。具体的实现方式,就是考虑从小到大对每个变量进行消元的时候,包含该变量的方程很多,并且他们两两之间一定是满足一个的全1段事另一个的前缀。那么用最短的那一段进行消元即可。
考虑到其他方程被消之后最靠左的1的位置会全部变成另一个位置,所以可以考虑使用可并堆维护各个方程。同时,为了求每个方程当前最靠左的1的位置,我搞了个并查集(逃
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> #include <vector> #include <queue> #include <ext/pb_ds/priority_queue.hpp> using R = double; // using GG = __gnu_pbds::priority_queue<int>; const int maxn = 100005; const R eps = 1e-8; inline int sign(R x) { if(fabs(x) < eps) { return 0; } else { if(x < 0.00) { return -1; } else { return 1; } } } int seg[maxn][2]; namespace BF { R A[105][105]; inline int det(int n) { int flag = 1; for(int i = 1; i <= n; i ++) { int r = i; for(int j = i + 1; j <= n; j ++) { if(fabs(A[j][i]) > fabs(A[i][i])) { r = j; } } if(r != i) { flag *= -1; for(int j = i; j <= n; j ++) { std::swap(A[i][j], A[r][j]); } } else { if(sign(A[i][i]) == 0) { return 0; } } for(int j = i + 1; j <= n; j ++) { if(sign(A[j][i]) == 0) continue; double f = A[j][i] / A[i][i]; for(int k = i; k <= n; k ++) { A[j][k] -= A[i][k] * f; } } } int ret = flag; for(int i = 1; i <= n; i ++) { ret *= sign(A[i][i]); } return ret; } inline void solve(int n) { for(int i = 1; i <= n; i ++) { int L = seg[i][0], R = seg[i][1]; for(int j = 1; j <= n; j ++) { if(L <= j && j <= R) { A[i][j] = 1; } else { A[i][j] = 0; } } } int v = (det(n)); if(v == -1) { puts("Fedor"); } else if(v == 0) { puts("Draw"); } else { puts("Alex"); } } }; namespace CT { /* struct Node { int l, r, id; bool operator <(const Node &res) const { if(l == res.l) { if(r == res.r) { return id < res.id; } else { return r < res.r; } } else { return l < res.l; } } bool operator >(const Node &res) const { if(l == res.l) { if(r == res.r) { return id > res.id; } else { return r > res.r; } } else { return l > res.l; } } bool operator ==(const Node &res) const { return (l == res.l) && (r == res.r) && (id == res.id); } }; */ struct N2 { int r, id; N2() { r = 0; id = 0; } N2(int x, int y) { r = x; id = y; } bool operator <(const N2 &res) const { if(r == res.r) { return id < res.id; } else { return r < res.r; } } bool operator >(const N2 &res) const { if(r == res.r) { return id > res.id; } else { return r > res.r; } } bool operator ==(const N2 &res) const { return (r == res.r) && (id == res.id); } }; /* struct Node { Node *fa, *ch[2]; N2 v; int l; int setv; int d() { return ((this == fa -> ch[1]) ? 1 : 0); } void sc(Node *c, int dir) { ch[dir] = c; c -> fa = this; } int cmp(const N2 &v2) const { if(v == v2) { return -1; } else { if(v2 < v) { return 0; } else { return 1; } } } void paint(int x) { if(l == -1) return; l = x; setv = x; } void pushdown(int x) { if(setv != -1) { ch[0] -> paint(setv); ch[1] -> paint(setv); setv = -1; } } }; Node pool[maxn]; std::queue<int> FQ; Node *nil, *cur; void init_pool() { nil = cur = pool; nil -> l = nil -> setv = -1; nil -> fa = nil -> ch[0] = nil -> ch[1] = nil; } Node *alloc_node(N2 x, int L) { Node *ret; if(FQ.empty()) { ret = ++ cur; } else { ret = FQ.front(); FQ.pop(); } ret -> v = x; ret -> l = L; ret -> setv = -1; ret -> fa = ret -> ch[0] = ret -> ch[1] = nil; return ret; } inline bool is_root(Node *o) { return (o -> fa == nil) } inline void zig(Node *x) { int d = x -> d(); Node *y = x -> fa; if(is_root(y)) { x -> fa = y -> fa; } else { y -> fa -> sc(x, y -> d()); } y -> sc(x -> ch[d ^ 1], d); x -> sc(y, d ^ 1); } void pdw_path(Node *x) { if(!is_root(x)) pdw_path(x -> fa); x -> pushdown(); } inline void splay(Node *x) { pdw_path(x); while(!is_root(x)) { Node *y = x -> fa; if(!is_root(y)) { if((x -> d()) ^ (y -> d())) { zig(x); } else { zig(y); } } zig(x); } } Node *insert(Node *o, Node *x) { if(o == nil) return x; Node *last = o; int d; while(o != nil) { o -> pushdown(); last = o; d = o -> cmp(x -> v); o = o -> ch[d]; } x -> ch[0] = x -> ch[1] = nil; last -> sc(x, d); splay(x); return x; } Node *top(Node *x) { Node *ret = x; while(x -> ch[0] == 0) { x -> paint } } */ int par[maxn * 2]; int get_fa(int x) { if(par[x] == x) return x; else return (par[x] = get_fa(par[x])); } void merge(int dir, int src) { dir = get_fa(dir); src = get_fa(src); if(dir == src) return; par[src] = dir; } bool is_same(int x, int y) { return (get_fa(x) == get_fa(y)); } using heap = __gnu_pbds::priority_queue<N2, std::greater<N2> >; heap Q[maxn]; int id[maxn], mp[maxn]; int det(int n) { int flag = 1; for(int i = 1; i <= n; i ++) { Q[i].clear(); } for(int i = 1; i <= 2 * n; i ++) { par[i] = i; } for(int i = 1; i <= n; i ++) { id[i] = mp[i] = i; int L = seg[i][0], R = seg[i][1]; Q[L].push(N2(R, i)); merge(L, n + i); } for(int i = 1; i <= n; i ++) { if(Q[i].empty()) { return 0; } int p = id[i]; if(!(get_fa(p + n) <= i && seg[p][1] == (Q[i].top()).r)) { flag *= -1; int np = (Q[i].top()).id; #ifdef LOCAL printf("Swaping %d and %d.\n", p, np); #endif int nv = mp[np]; std::swap(id[i], id[nv]); std::swap(mp[np], mp[p]); } p = id[i]; Q[i].pop(); int r = seg[p][1]; if(Q[i].size() > 0 && (Q[i].top()).r == r) { return 0; } if(r < n) { Q[r + 1].join(Q[i]); merge(r + 1, i); } } return flag; } void solve(int n) { int v = det(n); if(v == -1) { puts("Fedor"); } else if(v == 0) { puts("Draw"); } else { puts("Alex"); } } }; int main() { int T; scanf("%d", &T); while(T --) { int n; scanf("%d", &n); for(int i = 1; i <= n; i ++) { scanf("%d%d", &seg[i][0], &seg[i][1]); } if(n <= 100) { BF::solve(n); } else { CT::solve(n); } } return 0; }
[LibreOJ 2174][FJOI2016]神秘数 & [CC]FRBSUM
震惊!省选惊现CodeChef原题……竟然是为了……出原题难道不是普遍现象吗
这个题的思想肥肠喵啊(我膜了很长时间题解才看懂)……我争取给各位读者讲懂。
首先对于最后的答案\(x + 1\),一定说明\([1, x]\)都会被凑出来。那么我们可以考虑去维护这个前缀区间。
考虑把数从小到大加入。假设当前我们的可凑出来的前缀区间是\([1, r]\),那么加入一个数\(x\),如果说\(x > r + 1\),那么把之前所有可能的子集和都加上这个\(x\),一定凑不出来\(r + 1\)。并且这之后加入的数会越来越大,那个\(r\)不会再变大了,所以那个\(r\)就是答案了。
如果说\(x\leq r + 1\)呢?那么把前缀区间的每个数加上\(x\)都是可凑成数。所以前缀区间会变成\([1, r + x]\)。
然后观察出来这种性质之后,我们发现我们要考虑区间中不同的数,可以考虑主席树。我们建立一排主席树,对于查询\([L, R]\),不妨假设当前的前缀区间是\([1, r]\),然后考虑将其扩大。首先再加上大于\(r + 1\)的数是对扩大\(r\)没有意义的,所以我们就考虑在\([L, R]\)中找到所有权值处于\([1, r + 1]\)的数字的和(主席树可以派上用场),这样就是一个新的答案了。如果发现转移过去之后答案没有变大,那么以后也不会变大了,跳出来即可。
考虑分析一波复杂度。对于每一个\(r\),转移到更大的\(r\)会让他至少加上\(r + 1\),所以转移的次数是\(\log_2 s\)(这里假设\(s\)是所有数的和),然后每次一次转移的复杂度是\(\log_2 n\),所以单次查询复杂度可以大致认为是\(\log^2 n\)。
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <utility> typedef long long ll; const int maxn = 100005; const int maxsiz = maxn * 40; ll sumv[maxsiz]; int tot = 0; int lc[maxsiz], rc[maxsiz]; int build_tree(int L, int R) { int ret = ++ tot; if(L < R) { int M = (L + R) / 2; lc[ret] = build_tree(L, M); rc[ret] = build_tree(M + 1, R); } return ret; } int update(int o, int L, int R, int p, int v) { int ret = ++ tot; sumv[ret] = sumv[o] + (ll(v)); lc[ret] = lc[o], rc[ret] = rc[o]; if(L < R) { int M = (L + R) / 2; if(p <= M) { lc[ret] = update(lc[ret], L, M, p, v); } else { rc[ret] = update(rc[ret], M + 1, R, p, v); } } return ret; } ll query(int o, int L, int R, int ql, int qr) { if(ql <= L && R <= qr) { return sumv[o]; } else { int M = (L + R) / 2; ll ans = 0; if(ql <= M) ans += query(lc[o], L, M, ql, qr); if(qr > M) ans += query(rc[o], M + 1, R, ql, qr); return ans; } } int n; ll A[maxn], A2[maxn]; int cnt; void discretiz() { std::sort(A2 + 1, A2 + n + 1); cnt = std::unique(A2 + 1, A2 + 1 + n) - A2 - 1; } int get_p(ll v) { int ret = (std::lower_bound(A2 + 1, A2 + 1 + cnt, v) - A2); if(A2[ret] > v) ret --; return ret; } int T[maxn]; void init_tree() { T[0] = build_tree(1, cnt); for(int i = 1; i <= n; i ++) { T[i] = update(T[i - 1], 1, cnt, get_p(A[i]), A[i]); } } const ll INF = 1000000000LL; ll calc_sum(int l, int r, int typ) { if(typ == 0) return 0LL; return query(T[r], 1, cnt, 1, typ) - query(T[l - 1], 1, cnt, 1, typ); } ll calc(int l, int r) { ll maxv = 0LL, R = 1LL; maxv = calc_sum(l, r, get_p(R)); while(maxv >= R && R < INF) { R = std::min(maxv + 1LL, INF); maxv = calc_sum(l, r, get_p(R)); } return maxv + 1LL; } int main() { scanf("%d", &n); for(int i = 1; i <= n; i ++) { scanf("%lld", &A[i]); A2[i] = A[i]; } discretiz(); init_tree(); int q; scanf("%d", &q); while(q --) { int l, r; scanf("%d%d", &l, &r); printf("%lld\n", calc(l, r)); } return 0; }